Designing surface exposed sites on Bacillus subtilis lipase A for spin-labeling and hydration studies

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Afnan M. Jaufer , Adam Bouhadana , Amir Kharrazizadeh , Mingwei Zhou , Coray M. Colina , Gail E. Fanucci
{"title":"Designing surface exposed sites on Bacillus subtilis lipase A for spin-labeling and hydration studies","authors":"Afnan M. Jaufer ,&nbsp;Adam Bouhadana ,&nbsp;Amir Kharrazizadeh ,&nbsp;Mingwei Zhou ,&nbsp;Coray M. Colina ,&nbsp;Gail E. Fanucci","doi":"10.1016/j.bpc.2024.107203","DOIUrl":null,"url":null,"abstract":"<div><p>Spin-labeling with electron paramagnetic resonance spectroscopy (EPR) is a facile method for interrogating macromolecular flexibility, conformational changes, accessibility, and hydration. Within we present a computationally based approach for the rational selection of reporter sites in <em>Bacillus subtilis</em> lipase A (BSLA) for substitution to cysteine residues with subsequent modification with a spin-label that are expected to not significantly perturb the wild-type structure, dynamics, or enzymatic function. Experimental circular dichroism spectroscopy, Michaelis-Menten kinetic parameters and EPR spectroscopy data validate the success of this approach to computationally select reporter sites for future magnetic resonance investigations of hydration and hydration changes induced by polymer conjugation, tethering, immobilization, or amino acid substitution in BSLA. Analysis of molecular dynamic simulations of the impact of substitutions on the secondary structure agree well with experimental findings. We propose that this computationally guided approach for choosing spin-labeled EPR reporter sites, which evaluates relative surface accessibility coupled with hydrogen bonding occupancy of amino acids to the catalytic pocket via atomistic simulations, should be readily transferable to other macromolecular systems of interest including selecting sites for paramagnetic relaxation enhancement NMR studies, other spin-labeling EPR studies or any method requiring a tagging method where it is desirable to not alter enzyme stability or activity.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"308 ","pages":"Article 107203"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000322","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-labeling with electron paramagnetic resonance spectroscopy (EPR) is a facile method for interrogating macromolecular flexibility, conformational changes, accessibility, and hydration. Within we present a computationally based approach for the rational selection of reporter sites in Bacillus subtilis lipase A (BSLA) for substitution to cysteine residues with subsequent modification with a spin-label that are expected to not significantly perturb the wild-type structure, dynamics, or enzymatic function. Experimental circular dichroism spectroscopy, Michaelis-Menten kinetic parameters and EPR spectroscopy data validate the success of this approach to computationally select reporter sites for future magnetic resonance investigations of hydration and hydration changes induced by polymer conjugation, tethering, immobilization, or amino acid substitution in BSLA. Analysis of molecular dynamic simulations of the impact of substitutions on the secondary structure agree well with experimental findings. We propose that this computationally guided approach for choosing spin-labeled EPR reporter sites, which evaluates relative surface accessibility coupled with hydrogen bonding occupancy of amino acids to the catalytic pocket via atomistic simulations, should be readily transferable to other macromolecular systems of interest including selecting sites for paramagnetic relaxation enhancement NMR studies, other spin-labeling EPR studies or any method requiring a tagging method where it is desirable to not alter enzyme stability or activity.

Abstract Image

设计枯草芽孢杆菌脂肪酶 A 的表面暴露位点,用于自旋标记和水合研究
利用电子顺磁共振波谱(EPR)进行自旋标记是研究大分子柔性、构象变化、可及性和水合作用的一种简便方法。在本报告中,我们介绍了一种基于计算的方法,用于合理选择枯草杆菌脂肪酶 A(BSLA)中的报告位点,将其替换为半胱氨酸残基,然后用自旋标记物进行修饰,预计不会对野生型结构、动力学或酶功能造成显著干扰。实验性圆二色性光谱、迈克尔斯-门顿动力学参数和 EPR 光谱数据验证了这种方法的成功,可以通过计算选择报告位点,用于未来对 BSLA 中聚合物共轭、系留、固定化或氨基酸置换引起的水合和水合变化进行磁共振研究。分子动态模拟分析了取代对二级结构的影响,结果与实验结果完全吻合。我们建议,这种选择自旋标记 EPR 报告位点的计算指导方法(通过原子模拟评估氨基酸与催化口袋之间的相对表面可及性和氢键占有率)应该可以很容易地转移到其他感兴趣的大分子系统中,包括选择顺磁弛豫增强核磁共振研究、其他自旋标记 EPR 研究或任何需要标记方法(最好不改变酶的稳定性或活性)的位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信