{"title":"Circ_0004872 deficiency attenuates ox-LDL-induced vascular smooth muscle cell dysfunction by miR-424-5p-dependent regulation of FRS2.","authors":"Peng Qian, Xuanchao Cao, Qian Zhang, Meihua Gao, Xin Liu, Lijie Yan","doi":"10.1007/s11010-024-04929-x","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis (AS) is a pivotal pathological basis of cardiovascular and cerebrovascular diseases, and circular RNAs (circRNAs) has been disclosed to exert a vital part in the progression of AS. However, the functions of circ_0004872 in the progression of AS is indistinct. In this context, we aimed to elucidate the role of circ_0004872 and the potential mechanism in AS. The level of circ_0004872, miR-424-5p and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine (EDU) assays. The invasion and migration capabilities of VSMCs were tested by transwell assays and wound-healing assay, respectively. Western blot was adopted to check the protein levels of CyclinD1, Vimentin and FRS2. Dual-luciferase reporter and RNA immunoprecipitation assay were executed to manifest the interaction between miR-424-5p and circ_0004872 or FRS2. The level of circ_0004872 was increased in the serum samples of AS patients and ox-LDL-exposed VSMCs. Ox-LDL exposure triggered cell proliferation, invasion and migration ability of VSMCs. depletion of circ_0004872 partly weakened ox-LDL-mediated effects in VSMCs. Mechanistically, circ_0004872 functioned as a sponge of miR-424-5p, and miR-424-5p inhibition partly alleviated circ_0004872 deficiency-mediated influences in VSMCs. Additionally, miR-424-5p interacted with FRS2, and miR-424-5p constrained dysfunction in ox-LDL-stimulated VSMCs via reducing FRS2 level. Notably, circ_0004872 functioned as a sponge of miR-424-5p to elevate FRS2 expression. Circ_0004872 accelerated ox-LDL-induced damage via mediating miR-424-5p/FRS2 axis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04929-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis (AS) is a pivotal pathological basis of cardiovascular and cerebrovascular diseases, and circular RNAs (circRNAs) has been disclosed to exert a vital part in the progression of AS. However, the functions of circ_0004872 in the progression of AS is indistinct. In this context, we aimed to elucidate the role of circ_0004872 and the potential mechanism in AS. The level of circ_0004872, miR-424-5p and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine (EDU) assays. The invasion and migration capabilities of VSMCs were tested by transwell assays and wound-healing assay, respectively. Western blot was adopted to check the protein levels of CyclinD1, Vimentin and FRS2. Dual-luciferase reporter and RNA immunoprecipitation assay were executed to manifest the interaction between miR-424-5p and circ_0004872 or FRS2. The level of circ_0004872 was increased in the serum samples of AS patients and ox-LDL-exposed VSMCs. Ox-LDL exposure triggered cell proliferation, invasion and migration ability of VSMCs. depletion of circ_0004872 partly weakened ox-LDL-mediated effects in VSMCs. Mechanistically, circ_0004872 functioned as a sponge of miR-424-5p, and miR-424-5p inhibition partly alleviated circ_0004872 deficiency-mediated influences in VSMCs. Additionally, miR-424-5p interacted with FRS2, and miR-424-5p constrained dysfunction in ox-LDL-stimulated VSMCs via reducing FRS2 level. Notably, circ_0004872 functioned as a sponge of miR-424-5p to elevate FRS2 expression. Circ_0004872 accelerated ox-LDL-induced damage via mediating miR-424-5p/FRS2 axis.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.