Versatile photonic molecule switch in multimode microresonators.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Zihan Tao, Bitao Shen, Wencan Li, Luwen Xing, Haoyu Wang, Yichen Wu, Yuansheng Tao, Yan Zhou, Yandong He, Chao Peng, Haowen Shu, Xingjun Wang
{"title":"Versatile photonic molecule switch in multimode microresonators.","authors":"Zihan Tao, Bitao Shen, Wencan Li, Luwen Xing, Haoyu Wang, Yichen Wu, Yuansheng Tao, Yan Zhou, Yandong He, Chao Peng, Haowen Shu, Xingjun Wang","doi":"10.1038/s41377-024-01399-0","DOIUrl":null,"url":null,"abstract":"<p><p>Harnessing optical supermode interaction to construct artificial photonic molecules has uncovered a series of fundamental optical phenomena analogous to atomic physics. Previously, the distinct energy levels and interactions in such two-level systems were provided by coupled microresonators. The reconfigurability is limited, as they often require delicate external field stimuli or mechanically altering the geometric factors. These highly specific approaches also limit potential applications. Here, we propose a versatile on-chip photonic molecule in a multimode microring, utilizing a flexible regulation methodology to dynamically control the existence and interaction strength of spatial modes. The transition between single/multi-mode states enables the \"switched-off/on\" functionality of the photonic molecule, supporting wider generalized applications scenarios. In particular, \"switched-on\" state shows flexible and multidimensional mode splitting control in aspects of both coupling strength and phase difference, equivalent to the a.c. and d.c. Stark effect. \"Switched-off\" state allows for perfect low-loss single-mode transition (Q<sub>i</sub> ~ 10 million) under an ultra-compact bend size (FSR ~ 115 GHz) in a foundry-based silicon microring. It breaks the stereotyped image of the FSR-Q factor trade-off, enabling ultra-wideband and high-resolution millimeter-wave photonic operations. Our demonstration provides a flexible and portable solution for the integrated photonic molecule system, extending its research scope from fundamental physics to real-world applications such as nonlinear optical signal processing and sixth-generation wireless communication.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"51"},"PeriodicalIF":19.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01399-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing optical supermode interaction to construct artificial photonic molecules has uncovered a series of fundamental optical phenomena analogous to atomic physics. Previously, the distinct energy levels and interactions in such two-level systems were provided by coupled microresonators. The reconfigurability is limited, as they often require delicate external field stimuli or mechanically altering the geometric factors. These highly specific approaches also limit potential applications. Here, we propose a versatile on-chip photonic molecule in a multimode microring, utilizing a flexible regulation methodology to dynamically control the existence and interaction strength of spatial modes. The transition between single/multi-mode states enables the "switched-off/on" functionality of the photonic molecule, supporting wider generalized applications scenarios. In particular, "switched-on" state shows flexible and multidimensional mode splitting control in aspects of both coupling strength and phase difference, equivalent to the a.c. and d.c. Stark effect. "Switched-off" state allows for perfect low-loss single-mode transition (Qi ~ 10 million) under an ultra-compact bend size (FSR ~ 115 GHz) in a foundry-based silicon microring. It breaks the stereotyped image of the FSR-Q factor trade-off, enabling ultra-wideband and high-resolution millimeter-wave photonic operations. Our demonstration provides a flexible and portable solution for the integrated photonic molecule system, extending its research scope from fundamental physics to real-world applications such as nonlinear optical signal processing and sixth-generation wireless communication.

Abstract Image

多模微谐振器中的多功能光子分子开关
利用光超模相互作用来构建人工光子分子,揭示了一系列类似于原子物理学的基本光学现象。以前,这种两级系统中的不同能级和相互作用是由耦合微谐振器提供的。由于它们通常需要微妙的外部场刺激或机械地改变几何因素,因此可重构性有限。这些高度特定的方法也限制了潜在的应用。在这里,我们在多模微孔中提出了一种多功能片上光子分子,利用灵活的调节方法动态控制空间模式的存在和相互作用强度。单模/多模状态之间的转换实现了光子分子的 "开关/开启 "功能,支持更广泛的通用应用场景。特别是,"开关-开启 "状态在耦合强度和相位差方面显示出灵活的多维模式分裂控制,相当于交流和直流斯塔克效应。"开关 "状态允许在晶圆代工的硅微孔中以超紧凑的弯曲尺寸(FSR ~ 115 GHz)实现完美的低损耗单模转换(Qi ~ 1 千万)。它打破了 FSR-Q 因子权衡的刻板印象,实现了超宽带和高分辨率毫米波光子操作。我们的演示为集成光子分子系统提供了灵活便携的解决方案,将其研究范围从基础物理学扩展到非线性光学信号处理和第六代无线通信等实际应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信