{"title":"Artificial intelligence-based automated preprocessing and classification of impacted maxillary canines in panoramic radiographs.","authors":"Ali Abdulkreem, Tanmoy Bhattacharjee, Hessa Alzaabi, Kawther Alali, Angela Gonzalez, Jahanzeb Chaudhry, Sabarinath Prasad","doi":"10.1093/dmfr/twae005","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Automating the digital workflow for diagnosing impacted canines using panoramic radiographs (PRs) is challenging. This study explored feature extraction, automated cropping, and classification of impacted and nonimpacted canines as a first step.</p><p><strong>Methods: </strong>A convolutional neural network with SqueezeNet architecture was first trained to classify two groups of PRs (91with and 91without impacted canines) on the MATLAB programming platform. Based on results, the need to crop the PRs was realized. Next, artificial intelligence (AI) detectors were trained to identify specific landmarks (maxillary central incisors, lateral incisors, canines, bicuspids, nasal area, and the mandibular ramus) on the PRs. Landmarks were then explored to guide cropping of the PRs. Finally, improvements in classification of automatically cropped PRs were studied.</p><p><strong>Results: </strong>Without cropping, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for classifying impacted and nonimpacted canine was 84%. Landmark training showed that detectors could correctly identify upper central incisors and the ramus in ∼98% of PRs. The combined use of the mandibular ramus and maxillary central incisors as guides for cropping yielded the best results (∼10% incorrect cropping). When automatically cropped PRs were used, the AUC-ROC improved to 96%.</p><p><strong>Conclusions: </strong>AI algorithms can be automated to preprocess PRs and improve the identification of impacted canines.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"173-177"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twae005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Automating the digital workflow for diagnosing impacted canines using panoramic radiographs (PRs) is challenging. This study explored feature extraction, automated cropping, and classification of impacted and nonimpacted canines as a first step.
Methods: A convolutional neural network with SqueezeNet architecture was first trained to classify two groups of PRs (91with and 91without impacted canines) on the MATLAB programming platform. Based on results, the need to crop the PRs was realized. Next, artificial intelligence (AI) detectors were trained to identify specific landmarks (maxillary central incisors, lateral incisors, canines, bicuspids, nasal area, and the mandibular ramus) on the PRs. Landmarks were then explored to guide cropping of the PRs. Finally, improvements in classification of automatically cropped PRs were studied.
Results: Without cropping, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for classifying impacted and nonimpacted canine was 84%. Landmark training showed that detectors could correctly identify upper central incisors and the ramus in ∼98% of PRs. The combined use of the mandibular ramus and maxillary central incisors as guides for cropping yielded the best results (∼10% incorrect cropping). When automatically cropped PRs were used, the AUC-ROC improved to 96%.
Conclusions: AI algorithms can be automated to preprocess PRs and improve the identification of impacted canines.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X