Jackknife model averaging for linear regression models with missing responses

Pub Date : 2024-02-19 DOI:10.1007/s42952-024-00259-2
Jie Zeng, Weihu Cheng, Guozhi Hu
{"title":"Jackknife model averaging for linear regression models with missing responses","authors":"Jie Zeng, Weihu Cheng, Guozhi Hu","doi":"10.1007/s42952-024-00259-2","DOIUrl":null,"url":null,"abstract":"<p>We consider model averaging estimation problem in the linear regression model with missing response data, that allows for model misspecification. Based on the ‘complete’ data set for the response variable after inverse propensity score weighted imputation, we construct a leave-one-out cross-validation criterion for allocating model weights, where the propensity score model is estimated by the covariate balancing propensity score method. We derive some theoretical results to justify the proposed strategy. Firstly, when all candidate outcome regression models are misspecified, our procedures are proved to achieve optimality in terms of asymptotically minimizing the squared loss. Secondly, when the true outcome regression model is among the set of candidate models, the resulting model averaging estimators of the regression parameters are shown to be root-<i>n</i> consistent. Simulation studies provide evidence of the superiority of our methods over other existing model averaging methods, even when the propensity score model is misspecified. As an illustration, the approach is further applied to study the CD4 data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00259-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider model averaging estimation problem in the linear regression model with missing response data, that allows for model misspecification. Based on the ‘complete’ data set for the response variable after inverse propensity score weighted imputation, we construct a leave-one-out cross-validation criterion for allocating model weights, where the propensity score model is estimated by the covariate balancing propensity score method. We derive some theoretical results to justify the proposed strategy. Firstly, when all candidate outcome regression models are misspecified, our procedures are proved to achieve optimality in terms of asymptotically minimizing the squared loss. Secondly, when the true outcome regression model is among the set of candidate models, the resulting model averaging estimators of the regression parameters are shown to be root-n consistent. Simulation studies provide evidence of the superiority of our methods over other existing model averaging methods, even when the propensity score model is misspecified. As an illustration, the approach is further applied to study the CD4 data.

Abstract Image

分享
查看原文
对有缺失响应的线性回归模型进行积刀模型平均化
我们考虑了有缺失响应数据的线性回归模型中的模型平均估算问题,该问题允许模型的错误规范。基于反倾向得分加权估算后响应变量的 "完整 "数据集,我们构建了一个用于分配模型权重的 "留一 "交叉验证准则,其中倾向得分模型是通过协变量平衡倾向得分法估算的。我们得出了一些理论结果来证明所提出的策略是正确的。首先,当所有候选结果回归模型都被错误指定时,我们的程序被证明在渐近最小化平方损失方面达到了最优。其次,当真正的结果回归模型在候选模型集中时,所得到的回归参数模型平均估计值证明是根n一致的。模拟研究证明了我们的方法优于其他现有的模型平均方法,即使倾向评分模型被错误地指定。作为示例,我们进一步将该方法应用于 CD4 数据的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信