Disprove of a conjecture on the double Roman domination number

IF 0.9 3区 数学 Q2 MATHEMATICS
Z. Shao, R. Khoeilar, H. Karami, M. Chellali, S. M. Sheikholeslami
{"title":"Disprove of a conjecture on the double Roman domination number","authors":"Z. Shao,&nbsp;R. Khoeilar,&nbsp;H. Karami,&nbsp;M. Chellali,&nbsp;S. M. Sheikholeslami","doi":"10.1007/s00010-023-01029-x","DOIUrl":null,"url":null,"abstract":"<div><p>A double Roman dominating function (DRDF) on a graph <span>\\(G=(V,E)\\)</span> is a function <span>\\(f:V\\rightarrow \\{0,1,2,3\\}\\)</span> having the property that if <span>\\(f(v)=0\\)</span>, then vertex <i>v</i> must have at least two neighbors assigned 2 under <i>f</i> or one neighbor <i>w</i> with <span>\\(f(w)=3\\)</span>, and if <span>\\(f(v)=1\\)</span>, then vertex <i>v</i> must have at least one neighbor <i>w</i> with <span>\\(f(w)\\ge 2\\)</span>. The weight of a DRDF is the sum of its function values over all vertices, and the double Roman domination number <span>\\(\\gamma _{dR}(G)\\)</span> is the minimum weight of a DRDF on <i>G</i>. Khoeilar et al. (Discrete Appl. Math. 270:159–167, 2019) proved that if <i>G</i> is a connected graph of order <i>n</i> with minimum degree two different from <span>\\(C_{5}\\)</span> and <span>\\(C_{7}\\)</span>, then <span>\\(\\gamma _{dR}(G)\\le \\frac{11}{10}n.\\)</span> Moreover, they presented an infinite family of graphs <span>\\({\\mathcal {G}}\\)</span> attaining the upper bound, and conjectured that <span>\\({\\mathcal {G}}\\)</span> is the only family of extremal graphs reaching the bound. In this paper, we disprove this conjecture by characterizing all extremal graphs for this bound.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 1","pages":"241 - 260"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01029-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A double Roman dominating function (DRDF) on a graph \(G=(V,E)\) is a function \(f:V\rightarrow \{0,1,2,3\}\) having the property that if \(f(v)=0\), then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with \(f(w)=3\), and if \(f(v)=1\), then vertex v must have at least one neighbor w with \(f(w)\ge 2\). The weight of a DRDF is the sum of its function values over all vertices, and the double Roman domination number \(\gamma _{dR}(G)\) is the minimum weight of a DRDF on G. Khoeilar et al. (Discrete Appl. Math. 270:159–167, 2019) proved that if G is a connected graph of order n with minimum degree two different from \(C_{5}\) and \(C_{7}\), then \(\gamma _{dR}(G)\le \frac{11}{10}n.\) Moreover, they presented an infinite family of graphs \({\mathcal {G}}\) attaining the upper bound, and conjectured that \({\mathcal {G}}\) is the only family of extremal graphs reaching the bound. In this paper, we disprove this conjecture by characterizing all extremal graphs for this bound.

Abstract Image

推翻关于双罗马支配数的猜想
摘要 图(G=(V,E))上的双罗马占优函数(DRDF)是一个函数(f:V/arrow \{0,1,2,3(})),其性质是:如果(f(v)=0),那么顶点 v 必须至少有两个邻居被分配给 2,或者有一个邻居 w,并且(f(w)=3)。那么顶点 v 必须至少有两个在 f 下被分配为 2 的邻居,或者有一个邻居 w,并且 (f(w)=3)。如果 \(f(v)=1\)则顶点 v 必须至少有一个邻居 w 具有 (f(w)\ge 2\) 。DRDF 的权重是它在所有顶点上的函数值之和,双罗马支配数 \(\gamma _{dR}(G)\) 是 DRDF 在 G 上的最小权重。(Discrete Appl. Math. 270:159-167, 2019) 证明,如果 G 是一个阶数为 n 的连通图,其最小度数与 \(C_{5}\) 和 \(C_{7}\) 不同,那么 \(\gamma _{dR}(G)\le \frac{11}{10}n.\) 此外,他们提出了达到上界的图\({\mathcal {G}}\)的无穷族,并猜想\({\mathcal {G}}\)是唯一达到上界的极值图族。在本文中,我们通过描述该界限的所有极值图来反证这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信