A Predictive Surrogate Model for Heat Transfer of an Impinging Jet on a Concave Surface

Sajad Salavatidezfouli, Saeid Rakhsha, Armin Sheidani, Giovanni Stabile, Gianluigi Rozza
{"title":"A Predictive Surrogate Model for Heat Transfer of an Impinging Jet on a Concave Surface","authors":"Sajad Salavatidezfouli, Saeid Rakhsha, Armin Sheidani, Giovanni Stabile, Gianluigi Rozza","doi":"arxiv-2402.10641","DOIUrl":null,"url":null,"abstract":"This paper aims to comprehensively investigate the efficacy of various Model\nOrder Reduction (MOR) and deep learning techniques in predicting heat transfer\nin a pulsed jet impinging on a concave surface. Expanding on the previous\nexperimental and numerical research involving pulsed circular jets, this\ninvestigation extends to evaluate Predictive Surrogate Models (PSM) for heat\ntransfer across various jet characteristics. To this end, this work introduces\ntwo predictive approaches, one employing a Fast Fourier Transformation\naugmented Artificial Neural Network (FFT-ANN) for predicting the average\nNusselt number under constant-frequency scenarios. Moreover, the investigation\nintroduces the Proper Orthogonal Decomposition and Long Short-Term Memory\n(POD-LSTM) approach for random-frequency impingement jets. The POD-LSTM method\nproves to be a robust solution for predicting the local heat transfer rate\nunder random-frequency impingement scenarios, capturing both the trend and\nvalue of temporal modes. The comparison of these approaches highlights the\nversatility and efficacy of advanced machine learning techniques in modelling\ncomplex heat transfer phenomena.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to comprehensively investigate the efficacy of various Model Order Reduction (MOR) and deep learning techniques in predicting heat transfer in a pulsed jet impinging on a concave surface. Expanding on the previous experimental and numerical research involving pulsed circular jets, this investigation extends to evaluate Predictive Surrogate Models (PSM) for heat transfer across various jet characteristics. To this end, this work introduces two predictive approaches, one employing a Fast Fourier Transformation augmented Artificial Neural Network (FFT-ANN) for predicting the average Nusselt number under constant-frequency scenarios. Moreover, the investigation introduces the Proper Orthogonal Decomposition and Long Short-Term Memory (POD-LSTM) approach for random-frequency impingement jets. The POD-LSTM method proves to be a robust solution for predicting the local heat transfer rate under random-frequency impingement scenarios, capturing both the trend and value of temporal modes. The comparison of these approaches highlights the versatility and efficacy of advanced machine learning techniques in modelling complex heat transfer phenomena.
凹面上喷射流传热的预测替代模型
本文旨在全面研究各种模型降序(MOR)和深度学习技术在预测撞击凹面的脉冲射流传热方面的功效。在之前涉及脉冲圆形射流的实验和数值研究的基础上,本研究扩展到评估各种射流特性的传热预测替代模型(PSM)。为此,本研究引入了两种预测方法,一种是采用快速傅立叶变换增强人工神经网络(FFT-ANN)预测恒频情况下的平均努塞尔特数。此外,研究还引入了用于随机频率撞击射流的适当正交分解和长短期记忆(POD-LSTM)方法。POD-LSTM 方法被证明是预测随机频率撞击情况下局部传热率的稳健解决方案,同时捕捉了时间模式的趋势和价值。这些方法的比较凸显了先进机器学习技术在模拟复杂传热现象方面的通用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信