Pressure-stabilized fixed-stress iterative solutions of compositional poromechanics

Ryan M. Aronson, Nicola Castelletto, François P. Hamon, J. A. White, Hamdi A. Tchelepi
{"title":"Pressure-stabilized fixed-stress iterative solutions of compositional poromechanics","authors":"Ryan M. Aronson, Nicola Castelletto, François P. Hamon, J. A. White, Hamdi A. Tchelepi","doi":"arxiv-2402.10469","DOIUrl":null,"url":null,"abstract":"We consider the numerical behavior of the fixed-stress splitting method for\ncoupled poromechanics as undrained regimes are approached. We explain that\npressure stability is related to the splitting error of the scheme, not the\nfact that the discrete saddle point matrix never appears in the fixed-stress\napproach. This observation reconciles previous results regarding the pressure\nstability of the splitting method. Using examples of compositional\nporomechanics with application to geological CO$_2$ sequestration, we see that\nsolutions obtained using the fixed-stress scheme with a low order finite\nelement-finite volume discretization which is not inherently inf-sup stable can\nexhibit the same pressure oscillations obtained with the corresponding fully\nimplicit scheme. Moreover, pressure jump stabilization can effectively remove\nthese spurious oscillations in the fixed-stress setting, while also improving\nthe efficiency of the scheme in terms of the number of iterations required at\nevery time step to reach convergence.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.
成分孔力学的压力稳定定应力迭代解法
我们考虑了用于耦合孔力学的定应力分裂方法在接近排水状态时的数值行为。我们解释了压力稳定性与方案的分裂误差有关,而不是离散鞍点矩阵从未出现在定应力方法中这一事实。这一观察结果与之前关于分裂方法压力稳定性的结果相吻合。利用应用于地质 CO$_2$ 封存的成分流体力学实例,我们发现使用定应力方案和低阶有限元-有限体积离散法得到的结果,与使用相应的全隐方案得到的结果一样,其本身并不具有 inf-sup 稳定性。此外,压力跃迁稳定可以有效消除定应力设置中的这些虚假振荡,同时还能提高该方案的效率,即达到收敛所需的每个时间步的迭代次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信