Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains

Pub Date : 2024-02-18 DOI:10.1007/s10959-024-01315-7
Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov
{"title":"Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains","authors":"Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov","doi":"10.1007/s10959-024-01315-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary distribution either in weighted total variation norm or in weighted Wasserstein distances. Our inequalities apply to unbounded functions and depend explicitly on constants appearing in the conditions that we consider.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01315-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish moment and Bernstein-type inequalities for additive functionals of geometrically ergodic Markov chains. These inequalities extend the corresponding inequalities for independent random variables. Our conditions cover Markov chains converging geometrically to the stationary distribution either in weighted total variation norm or in weighted Wasserstein distances. Our inequalities apply to unbounded functions and depend explicitly on constants appearing in the conditions that we consider.

分享
查看原文
几何尔格马尔可夫链加法函数的概率和矩不等式
在本文中,我们为几何遍历马尔可夫链的加法函数建立了矩不等式和伯恩斯坦型不等式。这些不等式扩展了独立随机变量的相应不等式。我们的条件涵盖了以加权总变异规范或加权瓦瑟斯坦距离几何收敛于静态分布的马尔科夫链。我们的不等式适用于无界函数,并明确取决于我们所考虑的条件中出现的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信