High-order reliable numerical methods for epidemic models with non-constant recruitment rate

B. M. Takács, G. Svantnerné Sebestyén, I. Faragó
{"title":"High-order reliable numerical methods for epidemic models with non-constant recruitment rate","authors":"B. M. Takács, G. Svantnerné Sebestyén, I. Faragó","doi":"arxiv-2402.10549","DOIUrl":null,"url":null,"abstract":"The mathematical modeling of the propagation of illnesses has an important\nrole from both mathematical and biological points of view. In this article, we\nobserve an SEIR-type model with a general incidence rate and a non-constant\nrecruitment rate function. First, we observe the qualitative properties of\ndifferent methods: first-order and higher-order strong stability preserving\nRunge-Kutta methods \\cite{shu}. We give different conditions under which the\nnumerical schemes behave as expected. Then, the theoretical results are\ndemonstrated by some numerical experiments. \\keywords{positivity preservation,\ngeneral SEIR model, SSP Runge-Kutta methods}","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mathematical modeling of the propagation of illnesses has an important role from both mathematical and biological points of view. In this article, we observe an SEIR-type model with a general incidence rate and a non-constant recruitment rate function. First, we observe the qualitative properties of different methods: first-order and higher-order strong stability preserving Runge-Kutta methods \cite{shu}. We give different conditions under which the numerical schemes behave as expected. Then, the theoretical results are demonstrated by some numerical experiments. \keywords{positivity preservation, general SEIR model, SSP Runge-Kutta methods}
非恒定招募率流行病模型的高阶可靠数值方法
从数学和生物学的角度来看,疾病传播的数学模型都具有重要作用。在本文中,我们观察了一个具有一般发病率和非恒定招募率函数的 SEIR 型模型。首先,我们观察了不同方法的定性特性:一阶和高阶强稳定性保持 Runge-Kutta 方法(cite{shu})。我们给出了数值方案表现符合预期的不同条件。然后,通过一些数值实验来证明理论结果。\关键词{正性保持、一般 SEIR 模型、SSP Runge-Kutta 方法}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信