Wavelet compressed, modified Hilbert transform in the space-time discretization of the heat equation

Helmut Harbrecht, Christoph Schwab, Marco Zank
{"title":"Wavelet compressed, modified Hilbert transform in the space-time discretization of the heat equation","authors":"Helmut Harbrecht, Christoph Schwab, Marco Zank","doi":"arxiv-2402.10346","DOIUrl":null,"url":null,"abstract":"On a finite time interval $(0,T)$, we consider the multiresolution Galerkin\ndiscretization of a modified Hilbert transform $\\mathcal H_T$ which arises in\nthe space-time Galerkin discretization of the linear diffusion equation. To\nthis end, we design spline-wavelet systems in $(0,T)$ consisting of piecewise\npolynomials of degree $\\geq 1$ with sufficiently many vanishing moments which\nconstitute Riesz bases in the Sobolev spaces $ H^{s}_{0,}(0,T)$ and $\nH^{s}_{,0}(0,T)$. These bases provide multilevel splittings of the temporal\ndiscretization spaces into \"increment\" or \"detail\" spaces of direct sum type.\nVia algebraic tensor-products of these temporal multilevel discretizations with\nstandard, hierarchic finite element spaces in the spatial domain (with standard\nLagrangian FE bases), sparse space-time tensor-product spaces are obtained,\nwhich afford a substantial reduction in the number of the degrees of freedom as\ncompared to time-marching discretizations. In addition, temporal spline-wavelet\nbases allow to compress certain nonlocal integrodifferential operators which\nappear in stable space-time variational formulations of initial-boundary value\nproblems, such as the heat equation and the acoustic wave equation. An\nefficient preconditioner is proposed that affords linear complexity solves of\nthe linear system of equations which results from the sparse space-time\nGalerkin discretization.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On a finite time interval $(0,T)$, we consider the multiresolution Galerkin discretization of a modified Hilbert transform $\mathcal H_T$ which arises in the space-time Galerkin discretization of the linear diffusion equation. To this end, we design spline-wavelet systems in $(0,T)$ consisting of piecewise polynomials of degree $\geq 1$ with sufficiently many vanishing moments which constitute Riesz bases in the Sobolev spaces $ H^{s}_{0,}(0,T)$ and $ H^{s}_{,0}(0,T)$. These bases provide multilevel splittings of the temporal discretization spaces into "increment" or "detail" spaces of direct sum type. Via algebraic tensor-products of these temporal multilevel discretizations with standard, hierarchic finite element spaces in the spatial domain (with standard Lagrangian FE bases), sparse space-time tensor-product spaces are obtained, which afford a substantial reduction in the number of the degrees of freedom as compared to time-marching discretizations. In addition, temporal spline-wavelet bases allow to compress certain nonlocal integrodifferential operators which appear in stable space-time variational formulations of initial-boundary value problems, such as the heat equation and the acoustic wave equation. An efficient preconditioner is proposed that affords linear complexity solves of the linear system of equations which results from the sparse space-time Galerkin discretization.
热方程时空离散化中的小波压缩修正希尔伯特变换
在有限时间区间 $(0,T)$ 上,我们考虑对线性扩散方程的时空 Galerkin 离散化中出现的修正希尔伯特变换 $\mathcal H_T$ 进行多分辨率 Galerkin 离散化。为此,我们设计了$(0,T)$中的样条小波系统,该系统由具有足够多消失矩的、度数为$\geq 1$的片断小二项式组成,这些片断小二项式构成了索波列夫空间$H^{s}_{0,}(0,T)$和$H^{s}_{,0}(0,T)$中的里兹基。通过这些时间多级离散与空间域中的标准、分层有限元空间(使用标准拉格朗日 FE 基)的代数张量乘积,可以得到稀疏的时空张量乘积空间,与时间行进离散相比,可以大大减少自由度的数量。此外,时态样条波小基允许压缩某些非局部积分微分算子,这些非局部积分微分算子出现在初始边界值问题的稳定时空变分公式中,例如热方程和声波方程。我们提出了一种高效的预处理方法,它能对稀疏时空伽勒金离散化产生的线性方程组进行线性复杂性求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信