FPGA-based ML adaptive accelerator: A partial reconfiguration approach for optimized ML accelerator utilization

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2024-02-17 DOI:10.1016/j.array.2024.100337
Achraf El Bouazzaoui, Abdelkader Hadjoudja, Omar Mouhib, Nazha Cherkaoui
{"title":"FPGA-based ML adaptive accelerator: A partial reconfiguration approach for optimized ML accelerator utilization","authors":"Achraf El Bouazzaoui,&nbsp;Abdelkader Hadjoudja,&nbsp;Omar Mouhib,&nbsp;Nazha Cherkaoui","doi":"10.1016/j.array.2024.100337","DOIUrl":null,"url":null,"abstract":"<div><p>The relentless increase in data volume and complexity necessitates advancements in machine learning methodologies that are more adaptable. In response to this challenge, we present a novel architecture enabling dynamic classifier selection on FPGA platforms. This unique architecture combines hardware accelerators of three distinct classifiers—Support Vector Machines, K-Nearest Neighbors, and Deep Neural Networks—without requiring the combined area footprint of those implementations. It further introduces a hardware-based Accelerator Selector that dynamically selects the most fitting classifier for incoming data based on the K-Nearest Centroid approach. When tested on four different datasets, Our architecture demonstrated improved classification performance, with an accuracy enhancement of up to 8% compared to the software implementations. Besides this enhanced accuracy, it achieved a significant reduction in resource usage, with a decrease of up to 45% compared to a static implementation making it highly efficient in terms of resource utilization and energy consumption on FPGA platforms, paving the way for scalable ML applications. To the best of our knowledge, this work is the first to harness FPGA platforms for dynamic classifier selection.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000031/pdfft?md5=95f2138b6f79f83ca28d5588ddf2edda&pid=1-s2.0-S2590005624000031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The relentless increase in data volume and complexity necessitates advancements in machine learning methodologies that are more adaptable. In response to this challenge, we present a novel architecture enabling dynamic classifier selection on FPGA platforms. This unique architecture combines hardware accelerators of three distinct classifiers—Support Vector Machines, K-Nearest Neighbors, and Deep Neural Networks—without requiring the combined area footprint of those implementations. It further introduces a hardware-based Accelerator Selector that dynamically selects the most fitting classifier for incoming data based on the K-Nearest Centroid approach. When tested on four different datasets, Our architecture demonstrated improved classification performance, with an accuracy enhancement of up to 8% compared to the software implementations. Besides this enhanced accuracy, it achieved a significant reduction in resource usage, with a decrease of up to 45% compared to a static implementation making it highly efficient in terms of resource utilization and energy consumption on FPGA platforms, paving the way for scalable ML applications. To the best of our knowledge, this work is the first to harness FPGA platforms for dynamic classifier selection.

基于 FPGA 的 ML 自适应加速器:优化 ML 加速器利用率的部分重新配置方法
数据量和复杂性的不断增加要求机器学习方法具有更强的适应性。为了应对这一挑战,我们提出了一种新型架构,可在 FPGA 平台上实现动态分类器选择。这种独特的架构将支持向量机、K-近邻和深度神经网络这三种不同分类器的硬件加速器结合在一起,而不需要这些实现的总面积。它还引入了基于硬件的加速器选择器,可根据 K-Nearest Centroid 方法为输入数据动态选择最合适的分类器。在四个不同的数据集上进行测试时,我们的架构显示出更高的分类性能,与软件实现相比,准确率提高了 8%。除了准确率提高之外,它还显著降低了资源使用率,与静态实现相比降低了 45%,使其在 FPGA 平台上的资源利用率和能耗方面非常高效,为可扩展的 ML 应用铺平了道路。据我们所知,这项工作是首次利用 FPGA 平台进行动态分类器选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信