MISNN: Multiple Imputation via Semi-parametric Neural Networks.

Zhiqi Bu, Zongyu Dai, Yiliang Zhang, Qi Long
{"title":"MISNN: Multiple Imputation via Semi-parametric Neural Networks.","authors":"Zhiqi Bu, Zongyu Dai, Yiliang Zhang, Qi Long","doi":"10.1007/978-3-031-33374-3_34","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research, in order to avoid improper inference in the downstream data analysis. In the presence of high-dimensional data, imputation models that include feature selection, especially <math><mrow><msub><mo>ℓ</mo><mn>1</mn></msub></mrow></math> regularized regression (such as Lasso, adaptive Lasso, and Elastic Net), are common choices to prevent the model from underdetermination. However, conducting MI with feature selection is difficult: existing methods are often computationally inefficient and poor in performance. We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI. Leveraging the approximation power of neural networks, MISNN is a general and flexible framework, compatible with any feature selection method, any neural network architecture, high/low-dimensional data and general missing patterns. Through empirical experiments, MISNN has demonstrated great advantages over state-of-the-art imputation methods (e.g. Bayesian Lasso and matrix completion), in terms of imputation accuracy, statistical consistency and computation speed.</p>","PeriodicalId":517371,"journal":{"name":"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining","volume":"13935 ","pages":"430-442"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-33374-3_34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research, in order to avoid improper inference in the downstream data analysis. In the presence of high-dimensional data, imputation models that include feature selection, especially 1 regularized regression (such as Lasso, adaptive Lasso, and Elastic Net), are common choices to prevent the model from underdetermination. However, conducting MI with feature selection is difficult: existing methods are often computationally inefficient and poor in performance. We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI. Leveraging the approximation power of neural networks, MISNN is a general and flexible framework, compatible with any feature selection method, any neural network architecture, high/low-dimensional data and general missing patterns. Through empirical experiments, MISNN has demonstrated great advantages over state-of-the-art imputation methods (e.g. Bayesian Lasso and matrix completion), in terms of imputation accuracy, statistical consistency and computation speed.

MISNN:通过半参数神经网络进行多重估算。
多重归因(MI)已被广泛应用于生物医学、社会和计量经济学研究中的缺失值问题,以避免下游数据分析中的不当推断。在存在高维数据的情况下,包含特征选择的归因模型,尤其是 ℓ1 正则化回归(如 Lasso、自适应 Lasso 和 Elastic Net),是防止模型判定不足的常见选择。然而,进行带有特征选择的多元智能非常困难:现有的方法通常计算效率低、性能差。我们提出的 MISNN 是一种新颖、高效的算法,它将特征选择纳入了 MI。利用神经网络的近似能力,MISNN 是一种通用而灵活的框架,可与任何特征选择方法、任何神经网络架构、高/低维数据和一般缺失模式兼容。通过实证实验,MISNN 在估算准确性、统计一致性和计算速度方面都比最先进的估算方法(如贝叶斯拉索和矩阵补全)有很大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信