SRDA: Mobile Sensing based Fluid Overload Detection for End Stage Kidney Disease Patients using Sensor Relation Dual Autoencoder.

Mingyue Tang, Jiechao Gao, Guimin Dong, Carl Yang, Bradford Campbell, Brendan Bowman, Jamie Marie Zoellner, Emaad Abdel-Rahman, Mehdi Boukhechba
{"title":"SRDA: Mobile Sensing based Fluid Overload Detection for End Stage Kidney Disease Patients using Sensor Relation Dual Autoencoder.","authors":"Mingyue Tang, Jiechao Gao, Guimin Dong, Carl Yang, Bradford Campbell, Brendan Bowman, Jamie Marie Zoellner, Emaad Abdel-Rahman, Mehdi Boukhechba","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a life-threatening and prevalent disease. CKD patients, especially endstage kidney disease (ESKD) patients on hemodialysis, suffer from kidney failures and are unable to remove excessive fluid, causing fluid overload and multiple morbidities including death. Current solutions for fluid overtake monitoring such as ultrasonography and biomarkers assessment are cumbersome, discontinuous, and can only be performed in the clinic. In this paper, we propose SRDA, a latent graph learning powered fluid overload detection system based on Sensor Relation Dual Autoencoder to detect excessive fluid consumption of EKSD patients based on passively collected bio-behavioral data from smartwatch sensors. Experiments using real-world mobile sensing data indicate that SRDA outperforms the state-of-the-art baselines in both F1 score and recall, and demonstrate the potential of ubiquitous sensing for ESKD fluid intake management.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"209 ","pages":"133-146"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic kidney disease (CKD) is a life-threatening and prevalent disease. CKD patients, especially endstage kidney disease (ESKD) patients on hemodialysis, suffer from kidney failures and are unable to remove excessive fluid, causing fluid overload and multiple morbidities including death. Current solutions for fluid overtake monitoring such as ultrasonography and biomarkers assessment are cumbersome, discontinuous, and can only be performed in the clinic. In this paper, we propose SRDA, a latent graph learning powered fluid overload detection system based on Sensor Relation Dual Autoencoder to detect excessive fluid consumption of EKSD patients based on passively collected bio-behavioral data from smartwatch sensors. Experiments using real-world mobile sensing data indicate that SRDA outperforms the state-of-the-art baselines in both F1 score and recall, and demonstrate the potential of ubiquitous sensing for ESKD fluid intake management.

SRDA:基于移动传感的末期肾病患者体液超负荷检测(使用传感器关系双自动编码器)。
慢性肾脏病(CKD)是一种威胁生命的常见疾病。慢性肾脏病患者,尤其是接受血液透析的终末期肾脏病(ESKD)患者,因肾功能衰竭而无法排出过多的液体,导致体液超负荷和包括死亡在内的多种病症。目前的体液超负荷监测解决方案,如超声波检查和生物标志物评估,都非常繁琐、不连续,而且只能在临床上进行。在本文中,我们提出了基于传感器关系双自动编码器的潜图学习驱动的体液过量检测系统 SRDA,该系统可根据智能手表传感器被动收集的生物行为数据检测 EKSD 患者的过量液体消耗。使用真实世界移动传感数据进行的实验表明,SRDA 在 F1 分数和召回率方面都优于最先进的基线系统,并证明了无处不在的传感在 ESKD 摄入液体管理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信