Improving image quality using the pause function combination to PROPELLER sequence in brain MRI: a phantom study.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiological Physics and Technology Pub Date : 2024-06-01 Epub Date: 2024-02-17 DOI:10.1007/s12194-024-00784-z
Kousaku Saotome, Koji Matsumoto, Yoshiaki Kato, Yoshihiro Ozaki, Motohiro Nagai, Tomoyuki Hasegawa, Hiroki Tsuchiya, Tensho Yamao
{"title":"Improving image quality using the pause function combination to PROPELLER sequence in brain MRI: a phantom study.","authors":"Kousaku Saotome, Koji Matsumoto, Yoshiaki Kato, Yoshihiro Ozaki, Motohiro Nagai, Tomoyuki Hasegawa, Hiroki Tsuchiya, Tensho Yamao","doi":"10.1007/s12194-024-00784-z","DOIUrl":null,"url":null,"abstract":"<p><p>While some MRI systems offer a \"pause\" function, combining it with the PROPELLER method for image quality improvement remains underexplored. This study investigated whether repositioning the head after pausing during PROPELLER imaging enhances image quality. All brain phantom images in this study were obtained using a 3.0 T MRI and acquired using the fast spin-echo T2WI-based PROPELLER with motion correction. By combining the angle of rotational motion of the head phantom and the number of repositioning after a pause, two studies including seven trials were performed. Increasing the rotation angle decreased the image quality; however, pausing the image and repositioning the head phantom to the original angle improved the image quality. A similar result was obtained by repositioning the angle closer to its original angle. Experiments with multiple head movements showed that pausing the scan and repositioning the phantom with each movement improved image quality.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"518-526"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00784-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

While some MRI systems offer a "pause" function, combining it with the PROPELLER method for image quality improvement remains underexplored. This study investigated whether repositioning the head after pausing during PROPELLER imaging enhances image quality. All brain phantom images in this study were obtained using a 3.0 T MRI and acquired using the fast spin-echo T2WI-based PROPELLER with motion correction. By combining the angle of rotational motion of the head phantom and the number of repositioning after a pause, two studies including seven trials were performed. Increasing the rotation angle decreased the image quality; however, pausing the image and repositioning the head phantom to the original angle improved the image quality. A similar result was obtained by repositioning the angle closer to its original angle. Experiments with multiple head movements showed that pausing the scan and repositioning the phantom with each movement improved image quality.

在脑磁共振成像中使用暂停功能组合 PROPELLER 序列提高图像质量:一项模型研究。
虽然一些核磁共振成像系统提供了 "暂停 "功能,但将其与 PROPELLER 方法相结合以提高图像质量的研究仍然不足。本研究探讨了在 PROPELLER 成像过程中暂停后重新定位头部是否能提高图像质量。本研究中的所有脑部模型图像均使用 3.0 T 核磁共振成像,并使用基于快速自旋回波 T2WI 的 PROPELLER 进行运动校正。通过结合头部模型的旋转运动角度和暂停后重新定位的次数,进行了包括七次试验在内的两项研究。增加旋转角度会降低图像质量;但是,暂停图像并将头部模型重新定位到原始角度会提高图像质量。将角度调整到更接近原始角度也能获得类似的结果。多次头部运动的实验表明,每次运动时暂停扫描并重新定位模型都能提高图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信