{"title":"Text Classification of Translated Qur'anic Verses Using Supervised Learning Algorithm","authors":"Dhea Ananda, Syahida Nurhidayarnis, Tiara Afrah Afifah, Muhammad Anang Ramadhan, Ilvan Mahendra","doi":"10.57152/predatecs.v1i2.870","DOIUrl":null,"url":null,"abstract":"The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.","PeriodicalId":516904,"journal":{"name":"Public Research Journal of Engineering, Data Technology and Computer Science","volume":"20 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Research Journal of Engineering, Data Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/predatecs.v1i2.870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.