Predicting Cooperation with Learning Models

D. Fudenberg, Gustav Karreskog Rehbinder
{"title":"Predicting Cooperation with Learning Models","authors":"D. Fudenberg, Gustav Karreskog Rehbinder","doi":"10.1257/mic.20220148","DOIUrl":null,"url":null,"abstract":"We use simulations of a simple learning model to predict cooperation rates in the experimental play of the indefinitely repeated prisoner’s dilemma. We suppose that learning and the game parameters only influence play in the initial round of each supergame, and that after these rounds, play depends only on the outcome of the previous round. We find that our model predicts out-of-sample cooperation at least as well as models with more parameters and harder-to-interpret machine learning algorithms. Our results let us predict the effect of session length and help explain past findings on the role of strategic uncertainty. (JEL C57, C72, C73, D83, D91)","PeriodicalId":517133,"journal":{"name":"American Economic Journal: Microeconomics","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Economic Journal: Microeconomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/mic.20220148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We use simulations of a simple learning model to predict cooperation rates in the experimental play of the indefinitely repeated prisoner’s dilemma. We suppose that learning and the game parameters only influence play in the initial round of each supergame, and that after these rounds, play depends only on the outcome of the previous round. We find that our model predicts out-of-sample cooperation at least as well as models with more parameters and harder-to-interpret machine learning algorithms. Our results let us predict the effect of session length and help explain past findings on the role of strategic uncertainty. (JEL C57, C72, C73, D83, D91)
用学习模型预测合作
我们利用一个简单学习模型的模拟来预测无限重复囚徒困境实验中的合作率。我们假设学习和博弈参数只影响每个超级博弈的初始回合的博弈,而在这些回合之后,博弈只取决于前一回合的结果。我们发现,我们的模型对样本外合作的预测至少与参数更多和机器学习算法更难解释的模型一样好。我们的结果让我们可以预测会话长度的影响,并有助于解释过去关于战略不确定性作用的发现。(JEL C57, C72, C73, D83, D91)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信