Leveraging Weak Supervision and BiGRU Neural Networks for Sentiment Analysis on Label-Free News Headlines

Ahamadali Jamali, Shahin Alipour, Audrey Rah
{"title":"Leveraging Weak Supervision and BiGRU Neural Networks for Sentiment Analysis on Label-Free News Headlines","authors":"Ahamadali Jamali, Shahin Alipour, Audrey Rah","doi":"10.1109/ICAIC60265.2024.10433844","DOIUrl":null,"url":null,"abstract":"Auto-labeling of text is a useful and necessary technique for creating large and high-quality training data sets for machine learning models. Label-free sentiment classification is a challenging semi-supervised task in the natural language processing domain. This study leveraged the weak supervision framework to generate weak labels in three categories for millions of news headlines from Australian Broadcasting Corporation (ABC). A Bidirectional Gate Recurrent Unit (BiGRU) was then trained with neural network dense layers to achieve a validation accuracy of 96.76% with 99.99% accuracy. The performance of this method was also compared with traditional and deep learning natural language processing techniques.","PeriodicalId":517265,"journal":{"name":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","volume":"3 3","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIC60265.2024.10433844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Auto-labeling of text is a useful and necessary technique for creating large and high-quality training data sets for machine learning models. Label-free sentiment classification is a challenging semi-supervised task in the natural language processing domain. This study leveraged the weak supervision framework to generate weak labels in three categories for millions of news headlines from Australian Broadcasting Corporation (ABC). A Bidirectional Gate Recurrent Unit (BiGRU) was then trained with neural network dense layers to achieve a validation accuracy of 96.76% with 99.99% accuracy. The performance of this method was also compared with traditional and deep learning natural language processing techniques.
利用弱监督和 BiGRU 神经网络对无标签新闻标题进行情感分析
文本自动标记是一种有用且必要的技术,可为机器学习模型创建大量高质量的训练数据集。在自然语言处理领域,无标签情感分类是一项具有挑战性的半监督任务。本研究利用弱监督框架,为澳大利亚广播公司(ABC)的数百万条新闻标题生成三个类别的弱标签。然后用神经网络密集层训练双向门递归单元(BiGRU),使验证准确率达到 96.76%,准确率为 99.99%。该方法的性能还与传统自然语言处理技术和深度学习自然语言处理技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信