Derin Sinir Ağlarını Kullanan Göğüs Röntgenleri ile Otomatik Tüberküloz Sınıflandırması Örnek Çalışma: Nijerya Halk Sağlığı

M. Abubakar, Mustafa Kaya, Mustafa Eri̇ş, Mohammed Mansur Abubakar, Serkan Karakuş, Khalid Jibril Sani̇
{"title":"Derin Sinir Ağlarını Kullanan Göğüs Röntgenleri ile Otomatik Tüberküloz Sınıflandırması Örnek Çalışma: Nijerya Halk Sağlığı","authors":"M. Abubakar, Mustafa Kaya, Mustafa Eri̇ş, Mohammed Mansur Abubakar, Serkan Karakuş, Khalid Jibril Sani̇","doi":"10.55525/tjst.1222836","DOIUrl":null,"url":null,"abstract":"Tuberculosis, a contagious lung ailment, stands as a prominent global mortality factor. Its significant impact on public health in Nigeria necessitates comprehensive intervention strategies. Detecting, preventing, and treating this disease remains imperative. Chest X-ray (CXR) images hold a pivotal role among diagnostic tools. Recent strides in deep learning have notably improved medical image analysis. In this research, we harnessed publicly available and proprietary CXR image datasets to construct robust models. Leveraging pre-trained deep neural networks, we aimed to enhance tuberculosis detection. Impressively, our experimentation yielded remarkable outcomes. Notably, f1-scores of 98% and 86% were attained on the respective public and private datasets. These results underscore the potency of deep neural networks in effectively identifying tuberculosis from CXR images. The study emphasizes the promise of this technology in combating the disease's spread and impact.","PeriodicalId":516893,"journal":{"name":"Turkish Journal of Science and Technology","volume":"65 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55525/tjst.1222836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis, a contagious lung ailment, stands as a prominent global mortality factor. Its significant impact on public health in Nigeria necessitates comprehensive intervention strategies. Detecting, preventing, and treating this disease remains imperative. Chest X-ray (CXR) images hold a pivotal role among diagnostic tools. Recent strides in deep learning have notably improved medical image analysis. In this research, we harnessed publicly available and proprietary CXR image datasets to construct robust models. Leveraging pre-trained deep neural networks, we aimed to enhance tuberculosis detection. Impressively, our experimentation yielded remarkable outcomes. Notably, f1-scores of 98% and 86% were attained on the respective public and private datasets. These results underscore the potency of deep neural networks in effectively identifying tuberculosis from CXR images. The study emphasizes the promise of this technology in combating the disease's spread and impact.
利用深度神经网络对胸部 X 光片进行结核病自动分类的案例研究:尼日利亚公共卫生
肺结核是一种传染性肺部疾病,是导致全球死亡的一个重要因素。它对尼日利亚的公共卫生产生了重大影响,因此有必要采取全面的干预战略。检测、预防和治疗这种疾病仍然是当务之急。胸部 X 光(CXR)图像在诊断工具中起着举足轻重的作用。最近在深度学习方面取得的进展显著改善了医学图像分析。在这项研究中,我们利用公开和专有的 CXR 图像数据集构建了强大的模型。利用预先训练好的深度神经网络,我们旨在提高肺结核的检测能力。令人印象深刻的是,我们的实验取得了显著的成果。值得注意的是,在公共和私有数据集上,f1 分数分别达到了 98% 和 86%。这些结果凸显了深度神经网络在从 CXR 图像中有效识别肺结核方面的潜力。这项研究强调了这项技术在抗击疾病传播和影响方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信