Dynamic Optimization for Petrophysical Property Estimation in Unsteady-State Coreflooding Using Pyomo

SPE Journal Pub Date : 2024-02-01 DOI:10.2118/219450-pa
Ramanzani Kalule, Hamid A. Abderrahmane, Shehzad Ahmed, W. Alameri, Mohamed Sassi
{"title":"Dynamic Optimization for Petrophysical Property Estimation in Unsteady-State Coreflooding Using Pyomo","authors":"Ramanzani Kalule, Hamid A. Abderrahmane, Shehzad Ahmed, W. Alameri, Mohamed Sassi","doi":"10.2118/219450-pa","DOIUrl":null,"url":null,"abstract":"\n This paper deals with a mathematical modeling and optimization-based approach for estimating relative permeability and capillary pressure from average water saturation data collected during unsteady-state waterflooding experiments. Assuming the Lomeland-Ebeltoft-Thomas (LET) model for the variation of the relative permeability with saturation, the appropriate governing equations, boundary, and initial conditions were solved within the Pyomo framework. Using interior point optimization (IPOPT) with a least-squares objective function, the six parameters of the LET model that ensure the history matching between the measured and calculated average saturation are determined. Additionally, we inferred the capillary pressure function and performed a Sobol sensitivity analysis on the LET model parameters. The results showcase the reliability and robustness of our proposed approach, as it estimates the crucial parameters driving the variation of oil-water flow relative permeability across several cases and effectively predicts the capillary pressure trend. The proposed approach can be seen as an alternative to experimental and numerical simulation-based techniques for predicting relative permeability and capillary pressure curves.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"136 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/219450-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a mathematical modeling and optimization-based approach for estimating relative permeability and capillary pressure from average water saturation data collected during unsteady-state waterflooding experiments. Assuming the Lomeland-Ebeltoft-Thomas (LET) model for the variation of the relative permeability with saturation, the appropriate governing equations, boundary, and initial conditions were solved within the Pyomo framework. Using interior point optimization (IPOPT) with a least-squares objective function, the six parameters of the LET model that ensure the history matching between the measured and calculated average saturation are determined. Additionally, we inferred the capillary pressure function and performed a Sobol sensitivity analysis on the LET model parameters. The results showcase the reliability and robustness of our proposed approach, as it estimates the crucial parameters driving the variation of oil-water flow relative permeability across several cases and effectively predicts the capillary pressure trend. The proposed approach can be seen as an alternative to experimental and numerical simulation-based techniques for predicting relative permeability and capillary pressure curves.
使用 Pyomo 对非稳态岩心注水过程中的岩石物理特性进行动态优化估计
本文介绍了一种基于数学建模和优化的方法,用于从非稳态注水实验中收集的平均含水饱和度数据估算相对渗透率和毛细管压力。假设相对渗透率随饱和度变化的模型为 Lomeland-Ebeltoft-Thomas(LET)模型,在 Pyomo 框架内求解了相应的控制方程、边界和初始条件。利用具有最小二乘目标函数的内部点优化(IPOPT),确定了 LET 模型的六个参数,以确保测量和计算的平均饱和度之间的历史匹配。此外,我们还推断了毛细管压力函数,并对 LET 模型参数进行了 Sobol 敏感性分析。结果表明,我们提出的方法既可靠又稳健,因为它估算出了几种情况下油水流动相对渗透率变化的关键参数,并有效地预测了毛细管压力的变化趋势。在预测相对渗透率和毛细管压力曲线时,我们提出的方法可以替代基于实验和数值模拟的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信