Monomial Boolean functions with large high-order nonlinearities

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jinjie Gao , Haibin Kan , Yuan Li , Jiahua Xu , Qichun Wang
{"title":"Monomial Boolean functions with large high-order nonlinearities","authors":"Jinjie Gao ,&nbsp;Haibin Kan ,&nbsp;Yuan Li ,&nbsp;Jiahua Xu ,&nbsp;Qichun Wang","doi":"10.1016/j.ic.2024.105152","DOIUrl":null,"url":null,"abstract":"<div><p>Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher order nonlinearities of some monomial Boolean functions.</p><p>We prove lower bounds on the second-order nonlinearities of functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> where <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>r</mi></math></span>. Among all monomial Boolean functions, our bounds match the best second-order nonlinearity lower bounds by Carlet [IEEE Transactions on Information Theory 54(3), 2008] and Yan and Tang [Discrete Mathematics 343(5), 2020] for odd and even <em>n</em>, respectively. We prove a lower bound on the third-order nonlinearity for functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></math></span>, which is the best third-order nonlinearity lower bound. For any <em>r</em>, we prove that the <em>r</em>-th order nonlinearity of <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mo>)</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mi>r</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>r</mi><mo>≪</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>n</mi></math></span>, this is the best lower bound among all explicit functions.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105152"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000178","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher order nonlinearities of some monomial Boolean functions.

We prove lower bounds on the second-order nonlinearities of functions trn(x7) and trn(x2r+3) where n=2r. Among all monomial Boolean functions, our bounds match the best second-order nonlinearity lower bounds by Carlet [IEEE Transactions on Information Theory 54(3), 2008] and Yan and Tang [Discrete Mathematics 343(5), 2020] for odd and even n, respectively. We prove a lower bound on the third-order nonlinearity for functions trn(x15), which is the best third-order nonlinearity lower bound. For any r, we prove that the r-th order nonlinearity of trn(x2r+11) is at least 2n12(12r)n+r2r11O(2n2). For rlog2n, this is the best lower bound among all explicit functions.

具有大高阶非线性的单项式布尔函数
显式布尔函数具有较大的高阶非线性是密码学、编码理论和计算复杂性中的一个重要问题。我们证明了函数 trn(x7) 和 trn(x2r+3) 的二阶非线性的下界,其中 n=2r.在所有单项式布尔函数中,我们的下界与 Carlet [IEEE Transactions on Information Theory 54(3), 2008] 以及 Yan 和 Tang [Discrete Mathematics 343(5), 2020] 分别针对奇数和偶数 n 的最佳二阶非线性下界相匹配。我们证明了函数 trn(x15) 的三阶非线性下界,这是最好的三阶非线性下界。对于任意 r,我们证明了 trn(x2r+1-1) 的 r 阶非线性度至少为 2n-1-2(1-2-r)n+r2r-1-1-O(2n2)。对于 r≪log2n,这是所有显式函数中的最佳下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信