Jinjie Gao , Haibin Kan , Yuan Li , Jiahua Xu , Qichun Wang
{"title":"Monomial Boolean functions with large high-order nonlinearities","authors":"Jinjie Gao , Haibin Kan , Yuan Li , Jiahua Xu , Qichun Wang","doi":"10.1016/j.ic.2024.105152","DOIUrl":null,"url":null,"abstract":"<div><p>Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher order nonlinearities of some monomial Boolean functions.</p><p>We prove lower bounds on the second-order nonlinearities of functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> where <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>r</mi></math></span>. Among all monomial Boolean functions, our bounds match the best second-order nonlinearity lower bounds by Carlet [IEEE Transactions on Information Theory 54(3), 2008] and Yan and Tang [Discrete Mathematics 343(5), 2020] for odd and even <em>n</em>, respectively. We prove a lower bound on the third-order nonlinearity for functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></math></span>, which is the best third-order nonlinearity lower bound. For any <em>r</em>, we prove that the <em>r</em>-th order nonlinearity of <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mo>)</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mi>r</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>r</mi><mo>≪</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>n</mi></math></span>, this is the best lower bound among all explicit functions.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105152"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000178","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher order nonlinearities of some monomial Boolean functions.
We prove lower bounds on the second-order nonlinearities of functions and where . Among all monomial Boolean functions, our bounds match the best second-order nonlinearity lower bounds by Carlet [IEEE Transactions on Information Theory 54(3), 2008] and Yan and Tang [Discrete Mathematics 343(5), 2020] for odd and even n, respectively. We prove a lower bound on the third-order nonlinearity for functions , which is the best third-order nonlinearity lower bound. For any r, we prove that the r-th order nonlinearity of is at least . For , this is the best lower bound among all explicit functions.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking