{"title":"The comparative analysis of the Ex and Hz fields sensitivity generated by electric dipole sources","authors":"XianXiang Wang, Jiaqi Li, Songda Lei","doi":"10.1093/jge/gxae018","DOIUrl":null,"url":null,"abstract":"\n In the CSAMT method, orthogonal electric and magnetic fields are commonly measured to determine the Cagniard apparent resistivity. However, in the near-field zone, the Cagniard resistivity is severely distorted, which is unrelated to underground structures. The Ex and Hz amplitudes in a homogeneous half-space monotonically vary in resistivity, and a numerical algorithm could achieve high-precision apparent resistivity without distortion for all frequencies. On this basis, the main focus of this investigation is on the comparative analysis of the sensitivity for the Ex field, Hz field, and Cagniard apparent resistivity to conductive and resistivity targets via synthetic models. The achieved results confirm that the Ex field could exhibit a more enhanced sensitivity for the resistive objects, while the Hz field could more effectively identify the conductive target. Besides, the static effect often distorts the electromagnetic data, which rigorously influences their application. The influence of the static effect on both the Ex and Hz fields is also examined in detail. The apparent resistivity based on the Ex field and Cagniard apparent resistivity is significantly affected by the static effect, which can mask deep anomalous blocks. However, the apparent resistivity based on the Hz field is almost unaffected by the static effect. Finally, a more efficient observation approach is provided for both the insulating and conductive targets.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the CSAMT method, orthogonal electric and magnetic fields are commonly measured to determine the Cagniard apparent resistivity. However, in the near-field zone, the Cagniard resistivity is severely distorted, which is unrelated to underground structures. The Ex and Hz amplitudes in a homogeneous half-space monotonically vary in resistivity, and a numerical algorithm could achieve high-precision apparent resistivity without distortion for all frequencies. On this basis, the main focus of this investigation is on the comparative analysis of the sensitivity for the Ex field, Hz field, and Cagniard apparent resistivity to conductive and resistivity targets via synthetic models. The achieved results confirm that the Ex field could exhibit a more enhanced sensitivity for the resistive objects, while the Hz field could more effectively identify the conductive target. Besides, the static effect often distorts the electromagnetic data, which rigorously influences their application. The influence of the static effect on both the Ex and Hz fields is also examined in detail. The apparent resistivity based on the Ex field and Cagniard apparent resistivity is significantly affected by the static effect, which can mask deep anomalous blocks. However, the apparent resistivity based on the Hz field is almost unaffected by the static effect. Finally, a more efficient observation approach is provided for both the insulating and conductive targets.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.