Recent trends and techniques of blood glucose level prediction for diabetes control

Q2 Health Professions
Benzir Md. Ahmed , Mohammed Eunus Ali , Mohammad Mehedy Masud , Mahmuda Naznin
{"title":"Recent trends and techniques of blood glucose level prediction for diabetes control","authors":"Benzir Md. Ahmed ,&nbsp;Mohammed Eunus Ali ,&nbsp;Mohammad Mehedy Masud ,&nbsp;Mahmuda Naznin","doi":"10.1016/j.smhl.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes, a metabolic disorder disease, can cause short-term acute or even long-term chronic complications in a patient’s body. In 2021, 10.5% of the world’s adult population had diabetes. These numbers are increasing day by day, which results in an associated increase of morbidity, mortality, and health care cost related to diabetes. Thus, a huge research effort has been carried out to manage diabetes. A precursor to diabetes management is to predict the future blood glucose levels based on a patient’s past history. In this paper, we provide a comprehensive and systematic study of diabetes management, focusing on recent research towards blood glucose level prediction. In particular, we have categorized and presented existing recent research based on major clinical application domains, different input features, and major modeling techniques including physiological, data-driven, and hybrid models. We have summarized the performance analysis of different modeling techniques using different metrics, and critically analyzed these techniques from different perspectives. Finally, we have identified a number of research challenges and potential future works that range from data collection to model improvement for Type 2 Diabetes Mellitus. This review can be a good starting point for researchers and practitioners who are working in building data-driven computational models for diabetes management and blood glucose level prediction.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100457"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes, a metabolic disorder disease, can cause short-term acute or even long-term chronic complications in a patient’s body. In 2021, 10.5% of the world’s adult population had diabetes. These numbers are increasing day by day, which results in an associated increase of morbidity, mortality, and health care cost related to diabetes. Thus, a huge research effort has been carried out to manage diabetes. A precursor to diabetes management is to predict the future blood glucose levels based on a patient’s past history. In this paper, we provide a comprehensive and systematic study of diabetes management, focusing on recent research towards blood glucose level prediction. In particular, we have categorized and presented existing recent research based on major clinical application domains, different input features, and major modeling techniques including physiological, data-driven, and hybrid models. We have summarized the performance analysis of different modeling techniques using different metrics, and critically analyzed these techniques from different perspectives. Finally, we have identified a number of research challenges and potential future works that range from data collection to model improvement for Type 2 Diabetes Mellitus. This review can be a good starting point for researchers and practitioners who are working in building data-driven computational models for diabetes management and blood glucose level prediction.

Abstract Image

预测血糖水平以控制糖尿病的最新趋势和技术
糖尿病是一种代谢紊乱疾病,可导致患者身体出现短期急性甚至长期慢性并发症。2021 年,全球有 10.5%的成年人患有糖尿病。这些数字与日俱增,导致与糖尿病相关的发病率、死亡率和医疗费用也随之增加。因此,人们为控制糖尿病开展了大量研究工作。糖尿病管理的先决条件是根据患者的既往病史预测未来的血糖水平。在本文中,我们对糖尿病管理进行了全面、系统的研究,重点关注近期对血糖水平预测的研究。特别是,我们根据主要的临床应用领域、不同的输入特征和主要的建模技术(包括生理模型、数据驱动模型和混合模型)对现有的最新研究进行了分类和介绍。我们使用不同的指标总结了不同建模技术的性能分析,并从不同角度对这些技术进行了批判性分析。最后,我们提出了一些研究挑战和未来可能开展的工作,包括从数据收集到改进 2 型糖尿病模型。这篇综述可作为研究人员和从业人员的一个良好起点,帮助他们建立数据驱动的计算模型,用于糖尿病管理和血糖水平预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信