Viscoplastic flows in superhydrophobic channels with oriented grooves: From anisotropic slip to secondary flow

IF 2.7 2区 工程技术 Q2 MECHANICS
H. Rahmani, S.M. Taghavi
{"title":"Viscoplastic flows in superhydrophobic channels with oriented grooves: From anisotropic slip to secondary flow","authors":"H. Rahmani,&nbsp;S.M. Taghavi","doi":"10.1016/j.jnnfm.2024.105203","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Poiseuille flows of viscoplastic fluids in typically thin channels equipped with a superhydrophobic groovy wall are numerically studied. The orientation of the groove relative to the applied pressure gradient can vary, and this orientation is measured via the groove orientation angle (<span><math><mi>θ</mi></math></span>). In particular, longitudinal (<span><math><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow></math></span>), oblique (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span>), and transverse (<span><math><mrow><mi>θ</mi><mo>=</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span>) flow configurations are considered. The Bingham constitutive equation is employed to model the viscoplastic rheology, within the framework of the Papanastasiou regularization method. Assuming that air (gas) fills the groove completely and that the formed liquid/air interface remains flat while pinned at the groove edges, the viscoplastic fluid slippage is modeled on the liquid/air interface using the Navier slip law. Due to the anisotropic slip dynamics for the oblique flow configuration, a secondary flow is generated normal to the direction of the pressure gradient, offering unique flow features. Our work systematically analyzes the effects of the flow parameters, <em>i.e.</em>, the groove orientation angle (<span><math><mi>θ</mi></math></span>), the Bingham (<span><math><mi>B</mi></math></span>) and slip (<span><math><mi>b</mi></math></span>) numbers, the groove periodicity length (<span><math><mi>ℓ</mi></math></span>), and the slip area fraction (<span><math><mi>φ</mi></math></span>) on the flow variables of interest, <em>i.e.</em>, the main and secondary velocity fields, the unyielded center plug zone, the effective slip length tensor (<span><math><mi>χ</mi></math></span>), the secondary flow index (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>), the slip angle difference (<span><math><mrow><mi>θ</mi><mo>−</mo><mi>s</mi></mrow></math></span>), and the pressure drop (<span><math><mrow><mi>Δ</mi><mi>P</mi></mrow></math></span>). It is demonstrated that <span><math><mi>χ</mi></math></span>’s shear component, <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>, and <span><math><mrow><mi>θ</mi><mo>−</mo><mi>s</mi></mrow></math></span> are maximum at intermediate <span><math><mi>θ</mi></math></span>, the value of which generally decreases with <span><math><mi>B</mi></math></span>. In addition, the center plug is unbroken for the longitudinal flow while it breaks with an increase in <span><math><mi>θ</mi></math></span> for sufficiently large <span><math><mi>b</mi></math></span>.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"326 ","pages":"Article 105203"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025724000193/pdfft?md5=888609c0fb3b426c000961c153d89929&pid=1-s2.0-S0377025724000193-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000193","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, Poiseuille flows of viscoplastic fluids in typically thin channels equipped with a superhydrophobic groovy wall are numerically studied. The orientation of the groove relative to the applied pressure gradient can vary, and this orientation is measured via the groove orientation angle (θ). In particular, longitudinal (θ=0), oblique (0<θ<90), and transverse (θ=90) flow configurations are considered. The Bingham constitutive equation is employed to model the viscoplastic rheology, within the framework of the Papanastasiou regularization method. Assuming that air (gas) fills the groove completely and that the formed liquid/air interface remains flat while pinned at the groove edges, the viscoplastic fluid slippage is modeled on the liquid/air interface using the Navier slip law. Due to the anisotropic slip dynamics for the oblique flow configuration, a secondary flow is generated normal to the direction of the pressure gradient, offering unique flow features. Our work systematically analyzes the effects of the flow parameters, i.e., the groove orientation angle (θ), the Bingham (B) and slip (b) numbers, the groove periodicity length (), and the slip area fraction (φ) on the flow variables of interest, i.e., the main and secondary velocity fields, the unyielded center plug zone, the effective slip length tensor (χ), the secondary flow index (IS), the slip angle difference (θs), and the pressure drop (ΔP). It is demonstrated that χ’s shear component, IS, and θs are maximum at intermediate θ, the value of which generally decreases with B. In addition, the center plug is unbroken for the longitudinal flow while it breaks with an increase in θ for sufficiently large b.

带有定向凹槽的超疏水通道中的粘塑性流动:从各向异性滑移到二次流动
在这项工作中,对粘塑性流体在装有超疏水凹槽壁的典型薄通道中的普伊塞耶(Poiseuille)流进行了数值研究。沟槽相对于外加压力梯度的取向可以变化,这种取向通过沟槽取向角 (θ)来测量。特别是考虑了纵向(θ=0)、斜向(0<θ<90∘)和横向(θ=90∘)流动配置。在 Papanastasiou 正则化方法的框架内,采用宾汉构成方程来模拟粘塑性流变。假设空气(气体)完全充满凹槽,形成的液体/空气界面保持平整,同时在凹槽边缘处被钉住,则使用纳维滑移定律对液体/空气界面上的粘塑性流体滑移进行建模。由于斜向流动配置的各向异性滑移动力学,产生了与压力梯度方向垂直的二次流,从而提供了独特的流动特征。我们的研究系统地分析了流动参数,即沟槽方向角 (θ)、宾汉姆数 (B) 和滑移数 (b)、沟槽周期长度 (ℓ) 和滑移面积分数 (φ) 对相关流动变量的影响、主速度场和二次速度场、未屈服中心塞区、有效滑移长度张量 (χ)、二次流指数 (IS)、滑移角差 (θ-s) 和压降 (ΔP)。结果表明,χ 的剪切分量、IS 和 θ-s 在中间值 θ 时最大,其值一般随 B 的增大而减小;此外,纵向流动的中心塞不会断裂,而在 b 足够大时,中心塞会随着 θ 的增大而断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信