Degree Factors with Red-Blue Coloring of Regular Graphs

Michitaka Furuya, Mikio Kano
{"title":"Degree Factors with Red-Blue Coloring of Regular Graphs","authors":"Michitaka Furuya, Mikio Kano","doi":"10.37236/12299","DOIUrl":null,"url":null,"abstract":"Recently, motivated to control a distribution of the vertices having specified degree in a degree factor, the authors introduced a new problem in [Graphs Combin. 39 (2023) #85], which is a degree factor problem of graphs whose vertices are colored with red or blue. In this paper, we continue its research on regular graphs. Among some results, our main theorem is the following: \nLet $a$, $b$ and $k$ be integers with $1\\leq a\\leq k\\leq b\\leq k+a+1$, and let $r$ be a sufficiently large integer compared to $a$, $b$ and $k$. Let $G$ be an $r$-regular graph. We arbitrarily color every vertex of $G$ with red or blue so that no two red vertices are adjacent. Then $G$ has a factor $F$ such that $\\deg_{F}(x)\\in \\{a,b\\}$ for every red vertex $x$ and $\\deg_{F}(y)\\in \\{k,k+1\\}$ for every blue vertex $y$.","PeriodicalId":509530,"journal":{"name":"The Electronic Journal of Combinatorics","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/12299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, motivated to control a distribution of the vertices having specified degree in a degree factor, the authors introduced a new problem in [Graphs Combin. 39 (2023) #85], which is a degree factor problem of graphs whose vertices are colored with red or blue. In this paper, we continue its research on regular graphs. Among some results, our main theorem is the following: Let $a$, $b$ and $k$ be integers with $1\leq a\leq k\leq b\leq k+a+1$, and let $r$ be a sufficiently large integer compared to $a$, $b$ and $k$. Let $G$ be an $r$-regular graph. We arbitrarily color every vertex of $G$ with red or blue so that no two red vertices are adjacent. Then $G$ has a factor $F$ such that $\deg_{F}(x)\in \{a,b\}$ for every red vertex $x$ and $\deg_{F}(y)\in \{k,k+1\}$ for every blue vertex $y$.
正则图红蓝着色的度系数
最近,为了控制具有指定度数的顶点在度数因子中的分布,作者在[Graphs Combin. 39 (2023) #85]中提出了一个新问题,即顶点用红色或蓝色着色的图的度数因子问题。在本文中,我们将继续对正则图进行研究。在一些结果中,我们的主要定理如下:让 $a$、$b$ 和 $k$ 都是整数,其值为 $1\leq a\leq k\leq b\leq k+a+1$,让 $r$ 与 $a$、$b$ 和 $k$ 相比是一个足够大的整数。让 $G$ 是一个 $r$ 规则图。我们任意给 $G$ 的每个顶点涂上红色或蓝色,使没有两个红色顶点相邻。那么 $G$ 有一个因子 $F$,使得每个红色顶点 $x$ 的 $deg_{F}(x)\in \{a,b\}$ 和每个蓝色顶点 $y$ 的 $deg_{F}(y)\in \{k,k+1/}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信