Well-posedness of evolutionary differential variational–hemivariational inequalities and applications to frictional contact mechanics

N. S. Taki, Kundan Kumar
{"title":"Well-posedness of evolutionary differential variational–hemivariational inequalities and applications to frictional contact mechanics","authors":"N. S. Taki, Kundan Kumar","doi":"10.1177/10812865231209256","DOIUrl":null,"url":null,"abstract":"In this paper, we study the well-posedness of a class of evolutionary variational–hemivariational inequalities coupled with a nonlinear ordinary differential equation in Banach spaces. The proof is based on an iterative approximation scheme showing that the problem has a unique mild solution. In addition, we established the continuity of the flow map with respect to the initial data. Under the general framework, we consider two new applications for modeling of frictional contact for viscoelastic materials. In the first application, we consider Coulomb’s friction with normal compliance, and in the second, normal damped response. The structure of the friction coefficient [Formula: see text] is new with motivation from geophysical applications in earth sciences with dependence on an external state variable [Formula: see text] and the slip rate [Formula: see text].","PeriodicalId":502792,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"58 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231209256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the well-posedness of a class of evolutionary variational–hemivariational inequalities coupled with a nonlinear ordinary differential equation in Banach spaces. The proof is based on an iterative approximation scheme showing that the problem has a unique mild solution. In addition, we established the continuity of the flow map with respect to the initial data. Under the general framework, we consider two new applications for modeling of frictional contact for viscoelastic materials. In the first application, we consider Coulomb’s friction with normal compliance, and in the second, normal damped response. The structure of the friction coefficient [Formula: see text] is new with motivation from geophysical applications in earth sciences with dependence on an external state variable [Formula: see text] and the slip rate [Formula: see text].
进化微分变分-半变量不等式的良好拟合及其在摩擦接触力学中的应用
本文研究了巴拿赫空间中一类与非线性常微分方程耦合的演化变分-半变分不等式的好求解性。证明基于迭代逼近方案,表明问题有唯一的温和解。此外,我们还建立了流图相对于初始数据的连续性。在一般框架下,我们考虑了粘弹性材料摩擦接触建模的两个新应用。在第一个应用中,我们考虑了具有法向顺应性的库仑摩擦;在第二个应用中,我们考虑了法向阻尼响应。摩擦系数[公式:见正文]的结构是全新的,其动机来自地球科学中的地球物理应用,取决于外部状态变量[公式:见正文]和滑移率[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信