Morphological and mechanical behavior of novel Al7075 (T6) + 3.5% SiC + 0.3% CR + 5.5% MoS2-based green hybrid composite: An experimental analysis and optimization via TOPSIS

Nikhilesh Singh, Deepika
{"title":"Morphological and mechanical behavior of novel Al7075 (T6) + 3.5% SiC + 0.3% CR + 5.5% MoS2-based green hybrid composite: An experimental analysis and optimization via TOPSIS","authors":"Nikhilesh Singh, Deepika","doi":"10.1177/09544089231225751","DOIUrl":null,"url":null,"abstract":"In the current scenario, high-performance, economical, and eco-friendly materials are the main objectives for many researchers in the field of material science. Therefore, this article demonstrates the novel green HMMCs comprise Al7075-T6 as a base alloy matrix with three distinct reinforced particles (such as silicon carbide (SiC), crumb rubber (CR), and molybdenum disulfide (MoS2)) is effectively doped via stir casting technique for the lightweight applications in an automotive and avionics industries. Besides, the different range of process variables such as SiC, CR, and MoS2 along with stirring speed, stirring time, and pouring temperature are elected for the synthesis of green composites via Taguchi L18 mixed-level orthogonal array. The parametric analysis of synthesized green HMMCs in terms of impact strength (in J) and compressive strength (in MPa) is examined with the help of the Taguchi design of experimentation and pooled analysis of variance. Moreover, metallographic inspection is also done via optical microscope and SEM-EDS techniques. The proposed green hybrid sample (S3) capitulates a superior enhancement in its microstructure, impact strength (up to 62.66%), and compressive strength (up to 22.78%) as compared with base alloy composite (S0). Furthermore, Taguchi's experimental outcomes are compared and validated via the technique for order of preference by similarity to ideal solution algorithm for better validation of the impact strength and compressive strength of the Al-based green hybrid metal matrix composite (S3).","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089231225751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the current scenario, high-performance, economical, and eco-friendly materials are the main objectives for many researchers in the field of material science. Therefore, this article demonstrates the novel green HMMCs comprise Al7075-T6 as a base alloy matrix with three distinct reinforced particles (such as silicon carbide (SiC), crumb rubber (CR), and molybdenum disulfide (MoS2)) is effectively doped via stir casting technique for the lightweight applications in an automotive and avionics industries. Besides, the different range of process variables such as SiC, CR, and MoS2 along with stirring speed, stirring time, and pouring temperature are elected for the synthesis of green composites via Taguchi L18 mixed-level orthogonal array. The parametric analysis of synthesized green HMMCs in terms of impact strength (in J) and compressive strength (in MPa) is examined with the help of the Taguchi design of experimentation and pooled analysis of variance. Moreover, metallographic inspection is also done via optical microscope and SEM-EDS techniques. The proposed green hybrid sample (S3) capitulates a superior enhancement in its microstructure, impact strength (up to 62.66%), and compressive strength (up to 22.78%) as compared with base alloy composite (S0). Furthermore, Taguchi's experimental outcomes are compared and validated via the technique for order of preference by similarity to ideal solution algorithm for better validation of the impact strength and compressive strength of the Al-based green hybrid metal matrix composite (S3).
基于新型 Al7075 (T6) + 3.5% SiC + 0.3% CR + 5.5% MoS2 的绿色混合复合材料的形态和力学行为:实验分析与 TOPSIS 优化
在当前形势下,高性能、经济性和生态友好型材料是材料科学领域许多研究人员的主要目标。因此,本文展示了新型绿色 HMMCs,包括以 Al7075-T6 为基础合金基体,通过搅拌铸造技术有效掺入三种不同的增强颗粒(如碳化硅 (SiC)、橡胶屑 (CR) 和二硫化钼 (MoS2)),用于汽车和航空电子工业的轻量化应用。此外,还通过田口 L18 混合水平正交阵列选择了不同范围的工艺变量,如 SiC、CR 和 MoS2 以及搅拌速度、搅拌时间和浇注温度,用于合成绿色复合材料。在田口实验设计和集合方差分析的帮助下,对合成的绿色 HMMC 的冲击强度(单位 J)和压缩强度(单位 MPa)进行了参数分析。此外,还通过光学显微镜和 SEM-EDS 技术进行了金相检测。与基础合金复合材料(S0)相比,拟议的绿色混合样品(S3)在微观结构、冲击强度(高达 62.66%)和抗压强度(高达 22.78%)方面均有显著提高。此外,为了更好地验证铝基绿色混合金属基复合材料(S3)的冲击强度和抗压强度,还通过与理想解算法相似的优选顺序技术对 Taguchi 实验结果进行了比较和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信