Exploration of the cultural attributes of Chinese character sculpture using machine learning technology

Zhen Luo
{"title":"Exploration of the cultural attributes of Chinese character sculpture using machine learning technology","authors":"Zhen Luo","doi":"10.32629/jai.v7i4.1471","DOIUrl":null,"url":null,"abstract":"The article employs machine learning, specifically the CLIP (Contrastive Language-Image Pretraining) model, to analyze Chinese character sculptures’ cultural attributes. It overcomes challenges in multi-dimensional data processing and high digitization costs. The process involves normalizing sculpture images, using FastText for vector representations of Chinese characters, and mapping text to the same embedding space as images for word embedding. The CLIP model, through unsupervised training, minimizes the negative logarithmic likelihood loss between image and text embeddings to establish cultural attribute representations. Key findings include the CLIP model’s improved performance over the M3 model, with a 5.4% higher average AUC. The model demonstrates high efficiency and accuracy, evident in its low RMSE (0.034) and MAE (0.025) and fast analysis time of 182 ms. This approach effectively and accurately analyzes the cultural attributes of Chinese character sculptures, addressing existing research gaps.","PeriodicalId":307060,"journal":{"name":"Journal of Autonomous Intelligence","volume":"19 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i4.1471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article employs machine learning, specifically the CLIP (Contrastive Language-Image Pretraining) model, to analyze Chinese character sculptures’ cultural attributes. It overcomes challenges in multi-dimensional data processing and high digitization costs. The process involves normalizing sculpture images, using FastText for vector representations of Chinese characters, and mapping text to the same embedding space as images for word embedding. The CLIP model, through unsupervised training, minimizes the negative logarithmic likelihood loss between image and text embeddings to establish cultural attribute representations. Key findings include the CLIP model’s improved performance over the M3 model, with a 5.4% higher average AUC. The model demonstrates high efficiency and accuracy, evident in its low RMSE (0.034) and MAE (0.025) and fast analysis time of 182 ms. This approach effectively and accurately analyzes the cultural attributes of Chinese character sculptures, addressing existing research gaps.
利用机器学习技术探索汉字雕塑的文化属性
文章采用机器学习,特别是 CLIP(对比语言-图像预训练)模型来分析汉字雕塑的文化属性。它克服了多维数据处理和数字化成本高的难题。这一过程包括对雕塑图像进行归一化处理,使用 FastText 对汉字进行矢量表示,并将文本映射到与图像相同的嵌入空间进行文字嵌入。CLIP 模型通过无监督训练,最小化图像和文本嵌入之间的负对数似然损失,从而建立文化属性表征。主要发现包括 CLIP 模型的性能比 M3 模型有所提高,平均 AUC 高出 5.4%。该模型的 RMSE(0.034)和 MAE(0.025)均较低,分析时间仅为 182 毫秒,可见其高效性和准确性。该方法有效、准确地分析了汉字雕塑的文化属性,填补了现有研究的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信