Infinite-dimensional Gaussian change of variables’ formula

Q2 Mathematics
Claudio Asci
{"title":"Infinite-dimensional Gaussian change of variables’ formula","authors":"Claudio Asci","doi":"10.1007/s11565-024-00490-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the Banach space <span>\\(\\ell _{\\infty }\\)</span> of the bounded real sequences, and a measure <span>\\(N(a,\\Gamma )\\)</span> over <span>\\(\\left( \\textbf{R}^{\\infty },\\mathcal {B}^{\\infty }\\right) \\)</span> analogous to the finite-dimensional Gaussian law. The main result of our paper is a change of variables’ formula for the integration, with respect to <span>\\(N(a,\\Gamma )\\)</span>, of the measurable real functions on <span>\\(\\left( E_{\\infty },\\mathcal {B}^{\\infty }\\left( E_{\\infty }\\right) \\right) \\)</span>, where <span>\\(E_{\\infty }\\)</span> is the separable Banach space of the convergent real sequences. This change of variables is given by some <span>\\(\\left( m,\\sigma \\right) \\)</span> functions, defined over a subset of <span>\\(E_{\\infty }\\)</span>, with values on <span>\\(E_{\\infty }\\)</span>, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1217 - 1269"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-024-00490-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00490-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Banach space \(\ell _{\infty }\) of the bounded real sequences, and a measure \(N(a,\Gamma )\) over \(\left( \textbf{R}^{\infty },\mathcal {B}^{\infty }\right) \) analogous to the finite-dimensional Gaussian law. The main result of our paper is a change of variables’ formula for the integration, with respect to \(N(a,\Gamma )\), of the measurable real functions on \(\left( E_{\infty },\mathcal {B}^{\infty }\left( E_{\infty }\right) \right) \), where \(E_{\infty }\) is the separable Banach space of the convergent real sequences. This change of variables is given by some \(\left( m,\sigma \right) \) functions, defined over a subset of \(E_{\infty }\), with values on \(E_{\infty }\), with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.

无穷维高斯变量变化公式
在本文中,我们研究了有界实数序列的巴拿赫空间(\ell _{\infty }\) ,以及在 \(\left( \textbf{R}^\{infty },\mathcal {B}^{\infty }\right) 上类似于有限维高斯定律的度量 \(N(a,\Gamma )\) 。我们这篇论文的主要结果是关于 \(left( E_{\infty },\mathcal {B}^{\infty }\left( E_{\infty }\right) \)上可测实数函数关于 \(N(a,\Gamma )\) 的积分的变量变化公式,其中 \(E_{\infty }\) 是收敛实数序列的可分离巴纳赫空间。这种变量变化是由\(\left( m,\sigma \right) \)函数给出的,这些函数定义在\(E_{\infty }\) 的子集上,其值在\(E_{\infty }\)上,其性质与有限维差分变形的性质类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信