Ri Pan, Xiaofang Cheng, Yinhui Xie, Jun Li, Weilong Huang
{"title":"Optimization of robotic polishing process parameters for mold steel based on artificial intelligence method","authors":"Ri Pan, Xiaofang Cheng, Yinhui Xie, Jun Li, Weilong Huang","doi":"10.1177/09544054231221959","DOIUrl":null,"url":null,"abstract":"Aimed to achieve quantitative control of workpiece surface after robotic polishing and improve polishing efficiency, a two-step processing optimization method involves artificial intelligence algorithms is investigated. Firstly, based on XGBoost algorithm, a prediction model for polished workpiece surface depending on key parameters is proposed, and the accuracy of the model is verified by experiments. After that, by using the above model, the influence of each parameter on the roughness was evaluated quantitatively. Subsequently, target roughness-driven optimization of processing parameters was presented by combining the roughness prediction model with NSGA II-TOPSIS algorithm based on the influence of each parameter on the roughness. To verify the proposed processing optimization method, polishing experiments of mold steel samples were conducted. The experimental results show that the maximum absolute error between the predicted and experimental roughness is 0.035 μm, and the maximum relative error is <9%. At the same time, when the minimum is set as the optimization objective. With the same length of polishing path, the feed rate is increased from 0.25 mm/s to 0.37 mm/s, and the efficiency is improved to 48%. The NSGA II-TOPSIS algorithm can achieve quantitative control of mold steel surface roughness after robotic polishing to improve polishing efficiency, and provide a basis for reasonable selection of processing parameters, which have certain practical value.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231221959","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Aimed to achieve quantitative control of workpiece surface after robotic polishing and improve polishing efficiency, a two-step processing optimization method involves artificial intelligence algorithms is investigated. Firstly, based on XGBoost algorithm, a prediction model for polished workpiece surface depending on key parameters is proposed, and the accuracy of the model is verified by experiments. After that, by using the above model, the influence of each parameter on the roughness was evaluated quantitatively. Subsequently, target roughness-driven optimization of processing parameters was presented by combining the roughness prediction model with NSGA II-TOPSIS algorithm based on the influence of each parameter on the roughness. To verify the proposed processing optimization method, polishing experiments of mold steel samples were conducted. The experimental results show that the maximum absolute error between the predicted and experimental roughness is 0.035 μm, and the maximum relative error is <9%. At the same time, when the minimum is set as the optimization objective. With the same length of polishing path, the feed rate is increased from 0.25 mm/s to 0.37 mm/s, and the efficiency is improved to 48%. The NSGA II-TOPSIS algorithm can achieve quantitative control of mold steel surface roughness after robotic polishing to improve polishing efficiency, and provide a basis for reasonable selection of processing parameters, which have certain practical value.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.