Effect of meta-structure on mechanical properties of polyvinylidene fluoride composite-based 3D printed intramedullary pins

Minhaz Husain, Rupinder Singh, B. S. Pabla
{"title":"Effect of meta-structure on mechanical properties of polyvinylidene fluoride composite-based 3D printed intramedullary pins","authors":"Minhaz Husain, Rupinder Singh, B. S. Pabla","doi":"10.1177/08927057241231734","DOIUrl":null,"url":null,"abstract":"Some studies have outlined the use of 3D-printed polyvinylidene fluoride (PVDF) composite-based solid intramedullary (IM) pins with tunable mechanical (tensile, compressive, flexural, and torsional) properties for orthopedic applications. But hitherto little has been reported on the effect of meta-structure induced in 3D-printed IM pins for canines from the mechanical properties’ viewpoint. This study highlights the design, fabrication, and testing to mimic actual loading conditions in the canine femur bone on novel IM pin with meta-structure employed in different length zones (30%, 40%, and 50% of total gauge length) prepared by fused filament fabrication (FFF) of PVDF composite. The IM pin (of length 150 mm) has square threads (pitch 2 mm) at the distal end (ɸ7 mm, up to 60 mm in length), and V threads (pitch 1.5 mm) at the proximal end (ɸ6 mm, up to 30 mm in length). The IM pin was fabricated at the best setting (of the FFF process) suggested by the multifactor optimization (at nozzle temperature (Nt) 235°C, printing speed (Ps) 60 mm/s, and raster angle (RA) 45°). The result suggests that for the solid IM pins prepared at the optimized settings the observed elongation, peak load (PL), and break load (BL) during tensile and compressive loading were 4.83 mm, 968.40 N, 958.20 N, and 14.19 mm, 412.80 N, 371.52 N respectively. Whereas for 50% meta-structure the observed elongation, PL, and BL during tensile and compressive loading were 14.49 mm, 405.49 N, 90.20 N, and 13.23 mm, 243.20 N, 218.88 N respectively. For both tensile and compression loading (in this case study), better elongation was noticed for the FFF-based IM pin with 50% meta-structure and hence recommended for implantation in the canine femur bone. The results are also supported by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) based surface characteristics of the fracture sites.","PeriodicalId":508178,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"185 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08927057241231734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some studies have outlined the use of 3D-printed polyvinylidene fluoride (PVDF) composite-based solid intramedullary (IM) pins with tunable mechanical (tensile, compressive, flexural, and torsional) properties for orthopedic applications. But hitherto little has been reported on the effect of meta-structure induced in 3D-printed IM pins for canines from the mechanical properties’ viewpoint. This study highlights the design, fabrication, and testing to mimic actual loading conditions in the canine femur bone on novel IM pin with meta-structure employed in different length zones (30%, 40%, and 50% of total gauge length) prepared by fused filament fabrication (FFF) of PVDF composite. The IM pin (of length 150 mm) has square threads (pitch 2 mm) at the distal end (ɸ7 mm, up to 60 mm in length), and V threads (pitch 1.5 mm) at the proximal end (ɸ6 mm, up to 30 mm in length). The IM pin was fabricated at the best setting (of the FFF process) suggested by the multifactor optimization (at nozzle temperature (Nt) 235°C, printing speed (Ps) 60 mm/s, and raster angle (RA) 45°). The result suggests that for the solid IM pins prepared at the optimized settings the observed elongation, peak load (PL), and break load (BL) during tensile and compressive loading were 4.83 mm, 968.40 N, 958.20 N, and 14.19 mm, 412.80 N, 371.52 N respectively. Whereas for 50% meta-structure the observed elongation, PL, and BL during tensile and compressive loading were 14.49 mm, 405.49 N, 90.20 N, and 13.23 mm, 243.20 N, 218.88 N respectively. For both tensile and compression loading (in this case study), better elongation was noticed for the FFF-based IM pin with 50% meta-structure and hence recommended for implantation in the canine femur bone. The results are also supported by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) based surface characteristics of the fracture sites.
元结构对基于聚偏氟乙烯复合材料的 3D 打印髓内针机械性能的影响
一些研究概述了基于聚偏二氟乙烯(PVDF)复合材料的三维打印固体髓内针(IM)在矫形外科应用中的使用情况,这种髓内针具有可调的机械性能(拉伸、压缩、弯曲和扭转)。但迄今为止,从机械性能的角度来看,有关三维打印犬用髓内针中元结构的影响的报道还很少。本研究重点介绍了新型 IM 针的设计、制造和测试,以模拟犬股骨骨质的实际加载条件,这种针在不同长度区域(总规长的 30%、40% 和 50%)采用了元结构,由 PVDF 复合材料的熔融长丝制造(FFF)制备而成。IM 针(长 150 毫米)的远端(ɸ7 毫米,最长 60 毫米)有方形螺纹(螺距 2 毫米),近端(ɸ6 毫米,最长 30 毫米)有 V 形螺纹(螺距 1.5 毫米)。IM 针是在多因素优化(喷嘴温度 (Nt) 235°C、印刷速度 (Ps) 60 mm/s、光栅角 (RA) 45°)所建议的(FFF 工艺)最佳设置下制造的。结果表明,对于在优化设置下制备的固体 IM 销针,在拉伸和压缩加载过程中观察到的伸长率、峰值载荷 (PL) 和断裂载荷 (BL) 分别为 4.83 mm、968.40 N 和 958.20 N,以及 14.19 mm、412.80 N 和 371.52 N。而对于 50%的元结构,在拉伸和压缩加载过程中观察到的伸长率、PL 和 BL 分别为 14.49 mm、405.49 N、90.20 N,以及 13.23 mm、243.20 N、218.88 N。在拉伸和压缩载荷下(在本案例研究中),基于 FFF 的 IM 针具有 50% 的元结构,具有更好的伸长率,因此推荐用于犬股骨的植入。基于断裂部位表面特征的扫描电子显微镜(SEM)和能量色散光谱(EDS)也支持上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信