Solving reaction-diffusion problems  with explicit Runge-Kutta exponential methods without order reduction

Begoña Cano, María Jesús Moreta
{"title":"Solving reaction-diffusion problems  with explicit Runge-Kutta exponential methods without order reduction","authors":"Begoña Cano, María Jesús Moreta","doi":"10.1051/m2an/2024011","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper a technique is given to recover the classical order of the method when explicit exponential Runge-Kutta methods integrate reaction-diffusion problems. In the literature, methods of high enough stiff order for problems with vanishing boundary conditions have been constructed, but that implies restricting the coefficients and thus, the number of stages and the computational cost may significantly increase with respect to other methods without those restrictions. In contrast, the technique which is suggested here is cheaper because it just needs, for any method, to add some terms with information only on the boundaries. Moreover, time-dependent boundary conditions are directly tackled here.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In this paper a technique is given to recover the classical order of the method when explicit exponential Runge-Kutta methods integrate reaction-diffusion problems. In the literature, methods of high enough stiff order for problems with vanishing boundary conditions have been constructed, but that implies restricting the coefficients and thus, the number of stages and the computational cost may significantly increase with respect to other methods without those restrictions. In contrast, the technique which is suggested here is cheaper because it just needs, for any method, to add some terms with information only on the boundaries. Moreover, time-dependent boundary conditions are directly tackled here.
用不降阶的显式 Runge-Kutta 指数法解决反应扩散问题
摘要本文给出了一种在显式指数 Runge-Kutta 方法集成反应扩散问题时恢复方法经典阶数的技术。在文献中,人们已经为边界条件消失的问题构建了足够高的刚性阶次的方法,但这意味着对系数的限制,因此,与其他没有这些限制的方法相比,阶次数量和计算成本可能会显著增加。相比之下,本文提出的技术成本更低,因为对于任何方法而言,只需添加一些只包含边界信息的项即可。此外,这里还可以直接处理随时间变化的边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信