Cercozoan diversity of spring barley grown in the field is strongly plant compartment specific

Julia Sacharow, S. Ratering, Santiago Quiroga, Rita Geissler-Plaum, Bellinda Schneider, Alessandra Österreicher Cunha-Dupont, Sylvia Schnell
{"title":"Cercozoan diversity of spring barley grown in the field is strongly plant compartment specific","authors":"Julia Sacharow, S. Ratering, Santiago Quiroga, Rita Geissler-Plaum, Bellinda Schneider, Alessandra Österreicher Cunha-Dupont, Sylvia Schnell","doi":"10.3389/frmbi.2024.1352566","DOIUrl":null,"url":null,"abstract":"Protists are an important part of the plant holobiome and influence plant growth and pathogenic pressure as consumers. Hordeum vulgare is one of the most economically important crops worldwide, and its yield depends on optimal environmental plant-growth conditions and pathogen defense. This study aimed to analyse the natural compositions of the cercozoan diversity, one of the most important and dominant protist phyla, of spring barley at different developmental stages, from different plant compartments over two years. Hordeum vulgare bulk soil samples were taken before seeding and after harvest on an organic farming field. Bulk soil, rhizosphere soil, roots and leaves were sampled at the flowering and ripening stages, and analysed with cercozoan-specific primers. Results showed a clear dominance of the families Sandonidae, Allapsidae, Cercomonadidae, Rhogostomidae and the order Glissomonadida in all sample types. Separated analyses of root, leaf and soil samples showed that members of the family Sandonidae were strongly enriched in leaf samples, while members of the Allapsidae family were enriched in the roots. No compositional differences were detected between the different plant developmental stages, except for the beta diversity of the leaf samples at the flowering and ripening stages. It can be concluded that the cercozoan diversity of spring barley is primarily affected by the plant compartment and not by the plant developmental stage. Further studies are needed to analyze the cercozoan community in greater taxonomic depth and to target their ecological function.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"129 1-2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in microbiomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frmbi.2024.1352566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protists are an important part of the plant holobiome and influence plant growth and pathogenic pressure as consumers. Hordeum vulgare is one of the most economically important crops worldwide, and its yield depends on optimal environmental plant-growth conditions and pathogen defense. This study aimed to analyse the natural compositions of the cercozoan diversity, one of the most important and dominant protist phyla, of spring barley at different developmental stages, from different plant compartments over two years. Hordeum vulgare bulk soil samples were taken before seeding and after harvest on an organic farming field. Bulk soil, rhizosphere soil, roots and leaves were sampled at the flowering and ripening stages, and analysed with cercozoan-specific primers. Results showed a clear dominance of the families Sandonidae, Allapsidae, Cercomonadidae, Rhogostomidae and the order Glissomonadida in all sample types. Separated analyses of root, leaf and soil samples showed that members of the family Sandonidae were strongly enriched in leaf samples, while members of the Allapsidae family were enriched in the roots. No compositional differences were detected between the different plant developmental stages, except for the beta diversity of the leaf samples at the flowering and ripening stages. It can be concluded that the cercozoan diversity of spring barley is primarily affected by the plant compartment and not by the plant developmental stage. Further studies are needed to analyze the cercozoan community in greater taxonomic depth and to target their ecological function.
田间种植的春大麦的纤毛虫多样性具有很强的植物区系特异性
原生生物是植物全生物体的重要组成部分,它们作为消费者影响着植物的生长和病原体的压力。大麦是世界上最重要的经济作物之一,其产量取决于植物生长的最佳环境条件和病原体防御能力。本研究旨在分析春大麦在不同发育阶段的纤毛虫多样性(最重要和最主要的原生动物门之一)的自然组成。在一块有机农田上,分别于播种前和收获后采集了大麦的大块土壤样本。在大麦开花和成熟阶段对大块土壤、根瘤土壤、根系和叶片进行取样,并使用纤毛虫特异性引物进行分析。结果表明,在所有样本类型中,沙门菌科(Sandonidae)、根瘤菌科(Allapsidae)、栉孔菌科(Cercomonadidae)、根瘤菌科(Rhogostomidae)和胶单胞菌目(Glissomonadida)明显占优势。对根系、叶片和土壤样本进行的分离分析表明,叶片样本中富含大量的沙门氏菌科成员,而根系样本中则富含沙门氏菌科成员。除了开花期和成熟期叶片样本的贝塔多样性外,不同植物发育阶段之间未发现任何成分差异。由此可以得出结论,春大麦的纤毛虫多样性主要受植物区系而非植物发育阶段的影响。还需要进一步研究,以便对纤毛虫群落进行更深入的分类分析,并确定其生态功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信