Xiangqun Li, Jiawen Liang, Jinyu Zhu, Shengping Shi, Fangyu Ding, Jianpeng Sun, Bo Liu
{"title":"Small Sample Fiber Full State Diagnosis Based on Fuzzy Clustering and Improved ResNet Network","authors":"Xiangqun Li, Jiawen Liang, Jinyu Zhu, Shengping Shi, Fangyu Ding, Jianpeng Sun, Bo Liu","doi":"10.1049/2024/5512014","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The optical time domain reflectometer (OTDR) curve features of communication fibers exhibit subtle differences among their normal, subhealthy, and faulty operating states, making it challenging for existing machine learning-based fault diagnosis algorithms to extract these minute features. In addition, the OTDR curve field fault data are scarce, and data-driven deep neural network that needs a lot of data training cannot meet the requirements. In response to this issue, this paper proposes a communication fiber state diagnosis model based on fuzzy clustering and an improved ResNet. First, the pretrained residual network (ResNet) is modified by removing the classification layer and retaining the feature extraction layers. A global average pooling (GAP) layer is designed as a replacement for the fully connected layer. Second, fuzzy clustering, instead of the softmax classification layer, is employed in ResNet for its characteristic of requiring no subsequent data training. The improved model requires only a small amount of sample training to optimize the parameters of the GAP layer, thereby accommodating state diagnosis in scenarios with limited data availability. During the diagnosis process, the OTDR curves are input into the network, resulting in 512 features outputted in the GAP layer. These features are used to construct a feature vector matrix, and a dynamic clustering graph is formed using fuzzy clustering to realize the fiber state diagnosis. Through on-site data detection and validation, it has been demonstrated that the improved ResNet can effectively identify the full cycle of fiber states.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5512014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5512014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The optical time domain reflectometer (OTDR) curve features of communication fibers exhibit subtle differences among their normal, subhealthy, and faulty operating states, making it challenging for existing machine learning-based fault diagnosis algorithms to extract these minute features. In addition, the OTDR curve field fault data are scarce, and data-driven deep neural network that needs a lot of data training cannot meet the requirements. In response to this issue, this paper proposes a communication fiber state diagnosis model based on fuzzy clustering and an improved ResNet. First, the pretrained residual network (ResNet) is modified by removing the classification layer and retaining the feature extraction layers. A global average pooling (GAP) layer is designed as a replacement for the fully connected layer. Second, fuzzy clustering, instead of the softmax classification layer, is employed in ResNet for its characteristic of requiring no subsequent data training. The improved model requires only a small amount of sample training to optimize the parameters of the GAP layer, thereby accommodating state diagnosis in scenarios with limited data availability. During the diagnosis process, the OTDR curves are input into the network, resulting in 512 features outputted in the GAP layer. These features are used to construct a feature vector matrix, and a dynamic clustering graph is formed using fuzzy clustering to realize the fiber state diagnosis. Through on-site data detection and validation, it has been demonstrated that the improved ResNet can effectively identify the full cycle of fiber states.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf