Invariant approximation in 2-banach space with \(H^{+}\) mappings

IF 0.9 Q2 MATHEMATICS
M. Pitchaimani, K. Saravanan
{"title":"Invariant approximation in 2-banach space with \\(H^{+}\\) mappings","authors":"M. Pitchaimani,&nbsp;K. Saravanan","doi":"10.1007/s13370-024-01169-6","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study the invariant approximation in 2-Banach spaces, we define the concept of <span>\\( H^{+} \\)</span> type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using <span>\\( H^{+} \\)</span> type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with <span>\\( H^{+} \\)</span> mapping in 2-Banach space.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01169-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to study the invariant approximation in 2-Banach spaces, we define the concept of \( H^{+} \) type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using \( H^{+} \) type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with \( H^{+} \) mapping in 2-Banach space.

带有 $$H^{+}$ H + 映射的 2-巴拿赫空间中的不变逼近
为了研究 2-Banach 空间中的不变逼近,我们定义了 \( H^{+} \) 型非扩张映射的概念来研究逼近的存在性和唯一性。利用 2-Banach 空间中的\( H^{+} \)型非扩张多值映射得到了经典的纳德勒定点定理的广义,还讨论了不变逼近,并通过用 2-Banach 空间中的\( H^{+} \)映射替换多值映射证明了几个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信