{"title":"Invariant approximation in 2-banach space with \\(H^{+}\\) mappings","authors":"M. Pitchaimani, K. Saravanan","doi":"10.1007/s13370-024-01169-6","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study the invariant approximation in 2-Banach spaces, we define the concept of <span>\\( H^{+} \\)</span> type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using <span>\\( H^{+} \\)</span> type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with <span>\\( H^{+} \\)</span> mapping in 2-Banach space.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01169-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study the invariant approximation in 2-Banach spaces, we define the concept of \( H^{+} \) type nonexpansive mapping to investigate the existence and uniqueness of approximation. Using \( H^{+} \) type non expansive multi-valued mapping in 2-Banach spaces to obtain a generalization of the classical Nadler’s fixed point theorem, also discuss the invariant approximation and prove several new results by replacing multi-valued mapping with \( H^{+} \) mapping in 2-Banach space.