Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites

Mohammad Ali Golshokouh, Nima Refahati, P. R. Saffari
{"title":"Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites","authors":"Mohammad Ali Golshokouh, Nima Refahati, P. R. Saffari","doi":"10.3390/jcs8020069","DOIUrl":null,"url":null,"abstract":"The effect of silicon nanoparticles with different percentages (2, 5, 7, and 10 wt.%) on moisture absorption in environments with different pHs (5, 6, 7, 8, 9) as well as fracture toughness of polymethyl methacrylate is discussed. The samples were prepared using pressure molding. Fracture strength was tested via the three-point bending method according to the ASTM D5045 standard and moisture absorption rate according to the absorption test according to the ASTM D570 standard. SEM images show that up to 7%, the dispersion of silica nanoparticles is acceptable, but the homogeneity is not acceptable at 10%. The results indicate that the increase in silica nanoparticles has improved the fracture toughness of the manufactured parts. The highest fracture toughness improvement is about 57% in the optimal state at 5%. Also, increasing silica nanoparticles increased the moisture absorption in the produced samples. In addition, as the acidic or base of the liquid moves to neutral, the reaction between the base polymer molecules and the test liquid decreases and, so, the moisture absorption also increases.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"363 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8020069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of silicon nanoparticles with different percentages (2, 5, 7, and 10 wt.%) on moisture absorption in environments with different pHs (5, 6, 7, 8, 9) as well as fracture toughness of polymethyl methacrylate is discussed. The samples were prepared using pressure molding. Fracture strength was tested via the three-point bending method according to the ASTM D5045 standard and moisture absorption rate according to the absorption test according to the ASTM D570 standard. SEM images show that up to 7%, the dispersion of silica nanoparticles is acceptable, but the homogeneity is not acceptable at 10%. The results indicate that the increase in silica nanoparticles has improved the fracture toughness of the manufactured parts. The highest fracture toughness improvement is about 57% in the optimal state at 5%. Also, increasing silica nanoparticles increased the moisture absorption in the produced samples. In addition, as the acidic or base of the liquid moves to neutral, the reaction between the base polymer molecules and the test liquid decreases and, so, the moisture absorption also increases.
硅纳米颗粒对聚甲基丙烯酸甲酯基纳米复合材料吸湿性和断裂韧性的影响
本文讨论了不同比例(2、5、7 和 10 wt.%)的硅纳米粒子对聚甲基丙烯酸甲酯在不同 pH 值(5、6、7、8 和 9)环境下的吸湿性以及断裂韧性的影响。样品采用压力成型法制备。根据 ASTM D5045 标准,采用三点弯曲法测试断裂强度;根据 ASTM D570 标准,采用吸湿测试法测试吸湿率。扫描电子显微镜图像显示,二氧化硅纳米颗粒的分散度在 7% 以下时是可以接受的,但在 10% 时,分散度就不均匀了。结果表明,纳米二氧化硅颗粒的增加提高了制件的断裂韧性。在 5%的最佳状态下,断裂韧性的改善幅度最大,约为 57%。同时,纳米二氧化硅颗粒的增加也提高了制备样品的吸湿性。此外,当液体的酸性或碱性转为中性时,基质聚合物分子与测试液体之间的反应会减弱,因此吸湿性也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信