A Physics-Informed Neural Network for the Nonlinear Damage Identification in a Reinforced Concrete Bridge Pier Using Seismic Responses

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Takahiro Yamaguchi, Tsukasa Mizutani
{"title":"A Physics-Informed Neural Network for the Nonlinear Damage Identification in a Reinforced Concrete Bridge Pier Using Seismic Responses","authors":"Takahiro Yamaguchi,&nbsp;Tsukasa Mizutani","doi":"10.1155/2024/5532909","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The condition assessment of reinforced concrete (RC) bridge piers after an earthquake using measured responses is important for ensuring the safety of road and railway users. The problem is nonlinear, and the locations and extents of damages are various. However, previous research works focused on linear structural identification or model updating assuming a limited number of nonlinear materials for reasonable estimates. Leveraging the ability of deep learning (DL) for robustly estimating a large number of unknown parameters, this study proposes an ALL nonlinear spring multi-degree-of-freedom (MDOF) damage identification algorithm based on a physics-informed neural network (PINN). The algorithm is applied to a stacked bilinear rotational spring and damper model of a pier. The number of unknown parameters reaches about 50. The errors of estimated elastic stiffnesses, damping coefficients, and ductility factors (DFs) using simulated responses added with noises are 0.4%, 0.6%, and 3.1%, respectively. Using full-scale RC bridge pier shaking table experiments, the algorithm revealed the distributions of elastic stiffnesses and DFs along the pier height and their deteriorations. The effects of different types of local damages are quantitatively evaluated and visualized on the distributions.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5532909","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5532909","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The condition assessment of reinforced concrete (RC) bridge piers after an earthquake using measured responses is important for ensuring the safety of road and railway users. The problem is nonlinear, and the locations and extents of damages are various. However, previous research works focused on linear structural identification or model updating assuming a limited number of nonlinear materials for reasonable estimates. Leveraging the ability of deep learning (DL) for robustly estimating a large number of unknown parameters, this study proposes an ALL nonlinear spring multi-degree-of-freedom (MDOF) damage identification algorithm based on a physics-informed neural network (PINN). The algorithm is applied to a stacked bilinear rotational spring and damper model of a pier. The number of unknown parameters reaches about 50. The errors of estimated elastic stiffnesses, damping coefficients, and ductility factors (DFs) using simulated responses added with noises are 0.4%, 0.6%, and 3.1%, respectively. Using full-scale RC bridge pier shaking table experiments, the algorithm revealed the distributions of elastic stiffnesses and DFs along the pier height and their deteriorations. The effects of different types of local damages are quantitatively evaluated and visualized on the distributions.

Abstract Image

利用地震响应识别钢筋混凝土桥墩非线性损伤的物理信息神经网络
利用实测响应评估地震后钢筋混凝土(RC)桥墩的状况对于确保公路和铁路使用者的安全非常重要。这个问题是非线性的,损坏的位置和程度也各不相同。然而,以往的研究工作主要集中在线性结构识别或模型更新上,假设有限数量的非线性材料进行合理估算。本研究利用深度学习(DL)对大量未知参数进行鲁棒估计的能力,提出了一种基于物理信息神经网络(PINN)的全局非线性弹簧多自由度(MDOF)损伤识别算法。该算法应用于码头的叠加双线性旋转弹簧和阻尼器模型。未知参数的数量达到约 50 个。使用添加了噪声的模拟响应估算的弹性刚度、阻尼系数和延性系数 (DF) 的误差分别为 0.4%、0.6% 和 3.1%。利用全尺寸 RC 桥墩振动台实验,该算法揭示了弹性刚度和延性系数沿桥墩高度的分布及其恶化情况。对不同类型的局部损坏对分布的影响进行了定量评估和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信