{"title":"A Physics-Informed Neural Network for the Nonlinear Damage Identification in a Reinforced Concrete Bridge Pier Using Seismic Responses","authors":"Takahiro Yamaguchi, Tsukasa Mizutani","doi":"10.1155/2024/5532909","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The condition assessment of reinforced concrete (RC) bridge piers after an earthquake using measured responses is important for ensuring the safety of road and railway users. The problem is nonlinear, and the locations and extents of damages are various. However, previous research works focused on linear structural identification or model updating assuming a limited number of nonlinear materials for reasonable estimates. Leveraging the ability of deep learning (DL) for robustly estimating a large number of unknown parameters, this study proposes an ALL nonlinear spring multi-degree-of-freedom (MDOF) damage identification algorithm based on a physics-informed neural network (PINN). The algorithm is applied to a stacked bilinear rotational spring and damper model of a pier. The number of unknown parameters reaches about 50. The errors of estimated elastic stiffnesses, damping coefficients, and ductility factors (DFs) using simulated responses added with noises are 0.4%, 0.6%, and 3.1%, respectively. Using full-scale RC bridge pier shaking table experiments, the algorithm revealed the distributions of elastic stiffnesses and DFs along the pier height and their deteriorations. The effects of different types of local damages are quantitatively evaluated and visualized on the distributions.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5532909","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5532909","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The condition assessment of reinforced concrete (RC) bridge piers after an earthquake using measured responses is important for ensuring the safety of road and railway users. The problem is nonlinear, and the locations and extents of damages are various. However, previous research works focused on linear structural identification or model updating assuming a limited number of nonlinear materials for reasonable estimates. Leveraging the ability of deep learning (DL) for robustly estimating a large number of unknown parameters, this study proposes an ALL nonlinear spring multi-degree-of-freedom (MDOF) damage identification algorithm based on a physics-informed neural network (PINN). The algorithm is applied to a stacked bilinear rotational spring and damper model of a pier. The number of unknown parameters reaches about 50. The errors of estimated elastic stiffnesses, damping coefficients, and ductility factors (DFs) using simulated responses added with noises are 0.4%, 0.6%, and 3.1%, respectively. Using full-scale RC bridge pier shaking table experiments, the algorithm revealed the distributions of elastic stiffnesses and DFs along the pier height and their deteriorations. The effects of different types of local damages are quantitatively evaluated and visualized on the distributions.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.