Marine Object Detection using YOLOv4 Adapted Convolutional Neural Network

Muhammad Daniyal Baig, Hafiz Burhan ul Haq
{"title":"Marine Object Detection using YOLOv4 Adapted Convolutional Neural Network","authors":"Muhammad Daniyal Baig, Hafiz Burhan ul Haq","doi":"10.31181/dma21202428","DOIUrl":null,"url":null,"abstract":"This research presents an innovative application of the YOLOv4 object detection model for the identification and classification of marine objects within a dataset encompassing seven distinct classes. The study focuses on enhancing the robustness and accuracy of object detection in challenging marine environments, leveraging the unique capabilities of YOLOv4. Pre-processing steps involve resizing raw images, applying data augmentations, and normalizing pixel values to ensure optimal model training. Specifically tailored for underwater scenarios, additional color space transformations address variations in lighting conditions. The model is trained to detect marine objects such as fish, corals, and underwater structures, contributing to advancements in underwater exploration, environmental monitoring, and marine resource management. Experimental results demonstrate the effectiveness of the proposed approach, showcasing YOLOv4's ability to accurately identify and classify marine objects across the specified seven classes. This research not only expands the applicability of YOLOv4 in the marine domain but also provides valuable insights for the development of intelligent systems for underwater object detection.","PeriodicalId":132082,"journal":{"name":"Decision Making Advances","volume":"73 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dma21202428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents an innovative application of the YOLOv4 object detection model for the identification and classification of marine objects within a dataset encompassing seven distinct classes. The study focuses on enhancing the robustness and accuracy of object detection in challenging marine environments, leveraging the unique capabilities of YOLOv4. Pre-processing steps involve resizing raw images, applying data augmentations, and normalizing pixel values to ensure optimal model training. Specifically tailored for underwater scenarios, additional color space transformations address variations in lighting conditions. The model is trained to detect marine objects such as fish, corals, and underwater structures, contributing to advancements in underwater exploration, environmental monitoring, and marine resource management. Experimental results demonstrate the effectiveness of the proposed approach, showcasing YOLOv4's ability to accurately identify and classify marine objects across the specified seven classes. This research not only expands the applicability of YOLOv4 in the marine domain but also provides valuable insights for the development of intelligent systems for underwater object detection.
利用 YOLOv4 适配卷积神经网络进行海洋物体探测
本研究介绍了 YOLOv4 物体检测模型在一个包含七个不同类别的数据集中用于识别和分类海洋物体的创新应用。研究重点是利用 YOLOv4 的独特功能,提高在具有挑战性的海洋环境中物体检测的鲁棒性和准确性。预处理步骤包括调整原始图像大小、应用数据增强和归一化像素值,以确保最佳的模型训练。专为水下场景定制的附加色彩空间转换可应对光照条件的变化。经过训练的模型可以检测到鱼类、珊瑚和水下结构等海洋物体,从而推动水下勘探、环境监测和海洋资源管理的进步。实验结果证明了所提方法的有效性,展示了 YOLOv4 在指定的七个类别中准确识别和分类海洋物体的能力。这项研究不仅拓展了 YOLOv4 在海洋领域的适用性,还为开发水下物体检测智能系统提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信