{"title":"Polarization Independent Ultra-wideband Meta-material Absorber Using Conductive Ink Resonator","authors":"Bharti Kumari, Abhinav Kumar, Prashant Kumar, Mintu Singh","doi":"10.26636/jtit.2024.1.1392","DOIUrl":null,"url":null,"abstract":"A wideband meta-material absorber with square and circular split rings that is based on a frequency selective surface of conductive ink is proposed. With over 90% absorptivity, the structure demonstrates broad absorption for the C, X, KU and K bands, as well as polarization independent characteristics for both TE and TM, at angles of up to 45°. Research has been performed to better understand the absorption phenomenon by looking into real and imaginary permittivity, permeability, normalized impedance, and surface current density. The meta-material absorber (MA) discussed in this study finds use in defense-related applications, such as radar surveillance, stealth technology, terrestrial and satellite communications.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"139 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A wideband meta-material absorber with square and circular split rings that is based on a frequency selective surface of conductive ink is proposed. With over 90% absorptivity, the structure demonstrates broad absorption for the C, X, KU and K bands, as well as polarization independent characteristics for both TE and TM, at angles of up to 45°. Research has been performed to better understand the absorption phenomenon by looking into real and imaginary permittivity, permeability, normalized impedance, and surface current density. The meta-material absorber (MA) discussed in this study finds use in defense-related applications, such as radar surveillance, stealth technology, terrestrial and satellite communications.