Assessment of Landslide Susceptibility in the Intermontane Basin Area of Northern Thailand

Q3 Environmental Science
K. Intarat, Patimakorn Yoomee, Areewan Hussadin, Wanjai Lamprom
{"title":"Assessment of Landslide Susceptibility in the Intermontane Basin Area of Northern Thailand","authors":"K. Intarat, Patimakorn Yoomee, Areewan Hussadin, Wanjai Lamprom","doi":"10.32526/ennrj/22/20230241","DOIUrl":null,"url":null,"abstract":"In mountainous terrain, landslides are common, particularly in intermontane basin locations. Such regions can adversely affect both human beings and the environment. In the assessment of landslide susceptibility, machine learning (ML) algorithms are increasingly popular due to their compatibility with geospatial data and tools. Herein, this study evaluated the performance of four ML algorithms: namely, random forest (RF), gradient boost (GB), extreme gradient boost (XGB), and stacking ensemble (STK). These algorithms were implemented to create a practical model of landslide susceptibility. The site under investigation is in the province of Chiang Mai, an intermontane basin area in northern Thailand where populations are settled. To address issues of multicollinearity, the variance inflation factor (VIF) was used. Eight out of fourteen factors were selected for examination; hyperparameters of each model were tested to acquire the best combination. Results indicated that the STK model outperforms all other models, providing evaluation metrics (precision, recall, F1-score, and overall accuracy) of 82.92%, 81.18%, 82.04%, and 81.75%, respectively. The area under the receiver operating characteristic (ROC) curve also reveals the high efficiency of the model, achieving 0.8928. However, further analysis of the appropriate model or base learner is necessary for achieving even higher predictive results.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20230241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

In mountainous terrain, landslides are common, particularly in intermontane basin locations. Such regions can adversely affect both human beings and the environment. In the assessment of landslide susceptibility, machine learning (ML) algorithms are increasingly popular due to their compatibility with geospatial data and tools. Herein, this study evaluated the performance of four ML algorithms: namely, random forest (RF), gradient boost (GB), extreme gradient boost (XGB), and stacking ensemble (STK). These algorithms were implemented to create a practical model of landslide susceptibility. The site under investigation is in the province of Chiang Mai, an intermontane basin area in northern Thailand where populations are settled. To address issues of multicollinearity, the variance inflation factor (VIF) was used. Eight out of fourteen factors were selected for examination; hyperparameters of each model were tested to acquire the best combination. Results indicated that the STK model outperforms all other models, providing evaluation metrics (precision, recall, F1-score, and overall accuracy) of 82.92%, 81.18%, 82.04%, and 81.75%, respectively. The area under the receiver operating characteristic (ROC) curve also reveals the high efficiency of the model, achieving 0.8928. However, further analysis of the appropriate model or base learner is necessary for achieving even higher predictive results.
泰国北部山间盆地地区山体滑坡易发性评估
在山区,山体滑坡很常见,尤其是在山间盆地。这些地区会对人类和环境造成不利影响。在滑坡易发性评估中,机器学习(ML)算法因其与地理空间数据和工具的兼容性而越来越受欢迎。在此,本研究评估了四种 ML 算法的性能,即随机森林 (RF)、梯度提升 (GB)、极端梯度提升 (XGB) 和堆叠集合 (STK)。采用这些算法创建了一个实用的滑坡易感性模型。调查地点位于清迈府,这是泰国北部的一个山间盆地,人口聚居。为解决多重共线性问题,使用了方差膨胀因子(VIF)。从 14 个因子中选择了 8 个进行研究;对每个模型的超参数进行了测试,以获得最佳组合。结果表明,STK 模型优于所有其他模型,其评价指标(精确度、召回率、F1 分数和总体准确度)分别为 82.92%、81.18%、82.04% 和 81.75%。接收者操作特征曲线(ROC)下的面积也显示了该模型的高效性,达到了 0.8928。不过,要获得更高的预测结果,还需要进一步分析适当的模型或基础学习器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信