Developments and applications of the HYDRUS computer software packages since 2016

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Jiří Šimůnek, Giuseppe Brunetti, D. Jacques, M. V. van Genuchten, M. Šejna
{"title":"Developments and applications of the HYDRUS computer software packages since 2016","authors":"Jiří Šimůnek, Giuseppe Brunetti, D. Jacques, M. V. van Genuchten, M. Šejna","doi":"10.1002/vzj2.20310","DOIUrl":null,"url":null,"abstract":"The HYDRUS codes have become standard tools for addressing many soil, agricultural, environmental, and hydrological problems requiring the evaluation of various subsurface physical, chemical, and biological processes. There are now many thousands of HYDRUS users worldwide, with thousands of applications of the HYDRUS models appearing in the peer‐reviewed literature. In this manuscript, we provide an overview of the capabilities of the most recent Version 5 of HYDRUS, focusing primarily on features implemented since 2016. We briefly describe the standard HYDRUS model and its standard and nonstandard specialized add‐on modules that significantly expand the capabilities of the software packages. The standard add‐on modules include HPx, UNSATCHEM, Wetland, Furrow, PFAS, COSMIC, DPU, SLOPE Cube, and Particle Tracking. Recent developments of the HYDRUS Package for MODFLOW are also described, along with additional capabilities incorporated into the graphical user interface supporting HYDRUS. Also discussed are new or improved options to simulate the fate and transport of environmental isotopes, multi‐cropping systems, compensated root water uptake, and hydraulic redistribution within the rootzone, which will be implemented in upcoming add‐on modules. Another objective is to review selected applications of the HYDRUS models, such as evaluations of various irrigation, low‐impact development (LID), and managed aquifer recharge (MAR) schemes.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20310","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The HYDRUS codes have become standard tools for addressing many soil, agricultural, environmental, and hydrological problems requiring the evaluation of various subsurface physical, chemical, and biological processes. There are now many thousands of HYDRUS users worldwide, with thousands of applications of the HYDRUS models appearing in the peer‐reviewed literature. In this manuscript, we provide an overview of the capabilities of the most recent Version 5 of HYDRUS, focusing primarily on features implemented since 2016. We briefly describe the standard HYDRUS model and its standard and nonstandard specialized add‐on modules that significantly expand the capabilities of the software packages. The standard add‐on modules include HPx, UNSATCHEM, Wetland, Furrow, PFAS, COSMIC, DPU, SLOPE Cube, and Particle Tracking. Recent developments of the HYDRUS Package for MODFLOW are also described, along with additional capabilities incorporated into the graphical user interface supporting HYDRUS. Also discussed are new or improved options to simulate the fate and transport of environmental isotopes, multi‐cropping systems, compensated root water uptake, and hydraulic redistribution within the rootzone, which will be implemented in upcoming add‐on modules. Another objective is to review selected applications of the HYDRUS models, such as evaluations of various irrigation, low‐impact development (LID), and managed aquifer recharge (MAR) schemes.
2016 年以来 HYDRUS 计算机软件包的开发和应用情况
HYDRUS 代码已成为解决许多土壤、农业、环境和水文问题的标准工具,这些问题需要对各种地下物理、化学和生物过程进行评估。目前,全世界有成千上万的 HYDRUS 用户,同行评审文献中出现了成千上万的 HYDRUS 模型应用。在本手稿中,我们概述了 HYDRUS 最新第 5 版的功能,主要侧重于 2016 年以来实现的功能。我们简要介绍了标准 HYDRUS 模型及其标准和非标准专用附加模块,这些模块极大地扩展了软件包的功能。标准附加模块包括 HPx、UNSATCHEM、Wetland、Furrow、PFAS、COSMIC、DPU、SLOPE Cube 和粒子跟踪。此外,还介绍了用于 MODFLOW 的 HYDRUS 软件包的最新发展,以及支持 HYDRUS 的图形用户界面的附加功能。此外,还讨论了模拟环境同位素归宿和传输、多作物系统、补偿根系吸水和根区内水力再分配的新的或改进的选项,这些选项将在即将推出的附加模块中实施。另一个目标是审查 HYDRUS 模型的选定应用,如对各种灌溉、低影响开发 (LID) 和有管理的含水层补给 (MAR) 方案的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信