Evapotranspiration and its partitioning during and following a mountain pine beetle infestation of a lodgepole pine stand in the interior of British Columbia, Canada
Shaorong Hao, Xin Jia, Hongxian Zhao, Xinhao Li, Yanmei Mu, T. Zha, Peng Liu, C. Bourque
{"title":"Evapotranspiration and its partitioning during and following a mountain pine beetle infestation of a lodgepole pine stand in the interior of British Columbia, Canada","authors":"Shaorong Hao, Xin Jia, Hongxian Zhao, Xinhao Li, Yanmei Mu, T. Zha, Peng Liu, C. Bourque","doi":"10.3389/ffgc.2024.1352853","DOIUrl":null,"url":null,"abstract":"Massive tree mortality events in western Canada due to widespread infestation by mountain pine beetle (MPB) are expected to impact local-to-regional evapotranspiration (ET) dynamics during and after a disturbance. How ecosystem-level ET and its components may vary with canopy-tree mortality (treefall) and subsequent understory recovery remains unclear.We used 10 years of continuous eddy-covariance and remote-sensing data (2007–2016) and machine-learning models based on random forest and xgboost to determine forest- and climate-driven effects at temporal scales appropriate for a lodgepole pine-dominated stand following a major, five-year MPB disturbance initiated in the summer of 2006.Total annual ET over the 10 years ranged from 207.2 to 384.6 mm, with annual plant transpiration (T) contributing to 57 ± 5.4% (mean ± standard deviation) of annual ET. Annual ET initially declined (2007–2011) and then increased (2011–2016), with ET and T/ET increasing at statistically non-significant rates of approximately 3.2 and 1.2% per year from 2007 to 2016. Air temperature (Ta) and vapor pressure deficit (VPD) were the most important predictors of seasonal variation in ET and T/ET during the 10-year period, with high Ta, VPD, and photosynthetically active radiation (PAR) causing ET and T/ET to increase. Annual ET increased with both increasing spring Ta and decreasing VPD. Annual T/ET was shown to increase with increasing VPD and decrease with increasing volumetric soil water content at a 5-cm depth (VWC5). Enhanced vegetation index (EVI, an indicator of canopy greenness) lagged T and overstory tree mortality, whereas previous- and current-year values of EVI were shown to be poor predictors of annual ET and T/ET.These findings suggest that the promotion of climate factors on forest ecosystem-level water vapor fluxes may offset reductions promoted by MPB outbreaks. Climate processes affected water vapor fluxes more than biotic factors, like stand greenness, highlighting the need to include climate-regulatory mechanisms in predictive models of ET dynamics during and subsequent to stand disturbance. Climate and forest-greenness effects on water vapor fluxes need to be explored at even longer time scales, e.g., at decadal scales, to capture long-drawn-out trends associated with stand disturbance and its subsequent recovery.","PeriodicalId":507254,"journal":{"name":"Frontiers in Forests and Global Change","volume":"186 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffgc.2024.1352853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Massive tree mortality events in western Canada due to widespread infestation by mountain pine beetle (MPB) are expected to impact local-to-regional evapotranspiration (ET) dynamics during and after a disturbance. How ecosystem-level ET and its components may vary with canopy-tree mortality (treefall) and subsequent understory recovery remains unclear.We used 10 years of continuous eddy-covariance and remote-sensing data (2007–2016) and machine-learning models based on random forest and xgboost to determine forest- and climate-driven effects at temporal scales appropriate for a lodgepole pine-dominated stand following a major, five-year MPB disturbance initiated in the summer of 2006.Total annual ET over the 10 years ranged from 207.2 to 384.6 mm, with annual plant transpiration (T) contributing to 57 ± 5.4% (mean ± standard deviation) of annual ET. Annual ET initially declined (2007–2011) and then increased (2011–2016), with ET and T/ET increasing at statistically non-significant rates of approximately 3.2 and 1.2% per year from 2007 to 2016. Air temperature (Ta) and vapor pressure deficit (VPD) were the most important predictors of seasonal variation in ET and T/ET during the 10-year period, with high Ta, VPD, and photosynthetically active radiation (PAR) causing ET and T/ET to increase. Annual ET increased with both increasing spring Ta and decreasing VPD. Annual T/ET was shown to increase with increasing VPD and decrease with increasing volumetric soil water content at a 5-cm depth (VWC5). Enhanced vegetation index (EVI, an indicator of canopy greenness) lagged T and overstory tree mortality, whereas previous- and current-year values of EVI were shown to be poor predictors of annual ET and T/ET.These findings suggest that the promotion of climate factors on forest ecosystem-level water vapor fluxes may offset reductions promoted by MPB outbreaks. Climate processes affected water vapor fluxes more than biotic factors, like stand greenness, highlighting the need to include climate-regulatory mechanisms in predictive models of ET dynamics during and subsequent to stand disturbance. Climate and forest-greenness effects on water vapor fluxes need to be explored at even longer time scales, e.g., at decadal scales, to capture long-drawn-out trends associated with stand disturbance and its subsequent recovery.