{"title":"Spectral analysis of a graph on the special set 𝒮","authors":"A. Rao, Sandeep Kumar, Deepa Sinha","doi":"10.1142/s1793830924500071","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the ring of integer modulo [Formula: see text] with two binary operators, addition [Formula: see text] and multiplication [Formula: see text], where [Formula: see text] is a positive integer. The special set [Formula: see text] is defined as [Formula: see text]. Our purpose in the present paper is to propose a new family of interconnection networks that are Cayley graphs on this special set [Formula: see text] and denote it by [Formula: see text]. In this paper, we define a relationship between [Formula: see text] and [Formula: see text], [Formula: see text] is a derived graph from [Formula: see text] by removing [Formula: see text] edges, where [Formula: see text] is a known fixed value. We also give the spectrum of absorption Cayley graph, unitary addition Cayley graph, and [Formula: see text]. We also provide values of [Formula: see text] for which the graph [Formula: see text] is hyperenergetic and discuss the structural properties of this graph, such as planarity and connectedness.","PeriodicalId":504044,"journal":{"name":"Discrete Mathematics, Algorithms and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830924500071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] be the ring of integer modulo [Formula: see text] with two binary operators, addition [Formula: see text] and multiplication [Formula: see text], where [Formula: see text] is a positive integer. The special set [Formula: see text] is defined as [Formula: see text]. Our purpose in the present paper is to propose a new family of interconnection networks that are Cayley graphs on this special set [Formula: see text] and denote it by [Formula: see text]. In this paper, we define a relationship between [Formula: see text] and [Formula: see text], [Formula: see text] is a derived graph from [Formula: see text] by removing [Formula: see text] edges, where [Formula: see text] is a known fixed value. We also give the spectrum of absorption Cayley graph, unitary addition Cayley graph, and [Formula: see text]. We also provide values of [Formula: see text] for which the graph [Formula: see text] is hyperenergetic and discuss the structural properties of this graph, such as planarity and connectedness.