Changlin Wang, Zhixia Yang, Junyou Ye, Xue Yang, Manchen Ding
{"title":"Supervised Feature Selection via Quadratic Surface Regression with \\(l_{2,1}\\)-Norm Regularization","authors":"Changlin Wang, Zhixia Yang, Junyou Ye, Xue Yang, Manchen Ding","doi":"10.1007/s40745-024-00518-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a supervised kernel-free quadratic surface regression method for feature selection (QSR-FS). The method is to find a quadratic function in each class and incorporates it into the least squares loss function. The <span>\\(l_{2,1}\\)</span>-norm regularization term is introduced to obtain a sparse solution, and a feature weight vector is constructed by the coefficients of the quadratic functions in all classes to explain the importance of each feature. An alternating iteration algorithm is designed to solve the optimization problem of this model. The computational complexity of the algorithm is provided, and the iterative formula is reformulated to further accelerate computation. In the experimental part, feature selection and its downstream classification tasks are performed on eight datasets from different domains, and the experimental results are analyzed by relevant evaluation index. Furthermore, feature selection interpretability and parameter sensitivity analysis are provided. The experimental results demonstrate the feasibility and effectiveness of our method.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00518-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a supervised kernel-free quadratic surface regression method for feature selection (QSR-FS). The method is to find a quadratic function in each class and incorporates it into the least squares loss function. The \(l_{2,1}\)-norm regularization term is introduced to obtain a sparse solution, and a feature weight vector is constructed by the coefficients of the quadratic functions in all classes to explain the importance of each feature. An alternating iteration algorithm is designed to solve the optimization problem of this model. The computational complexity of the algorithm is provided, and the iterative formula is reformulated to further accelerate computation. In the experimental part, feature selection and its downstream classification tasks are performed on eight datasets from different domains, and the experimental results are analyzed by relevant evaluation index. Furthermore, feature selection interpretability and parameter sensitivity analysis are provided. The experimental results demonstrate the feasibility and effectiveness of our method.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.