{"title":"Euler’s prime-producing polynomial revisited","authors":"R. Heffernan, Nick Lord, Des MacHale","doi":"10.1017/mag.2024.11","DOIUrl":null,"url":null,"abstract":"Euler’s polynomial f (n) = n2 + n + 41 is famous for producing 40 different prime numbers when the consecutive values 0, 1, …, 39 are substituted: see Table 1. Some authors, including Euler, prefer the polynomial f (n − 1) = n2 − n + 41 with prime values for n = 1, …, 40. Since f (−n) = f (n − 1), f (n) actually takes prime values (with each value repeated once) for n = −40, −39, …, 39; equivalently the polynomial f (n − 40) = n2 − 79n + 1601 takes (repeated) prime values for n = 0, 1, …, 79.","PeriodicalId":22812,"journal":{"name":"The Mathematical Gazette","volume":"691 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/mag.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Euler’s polynomial f (n) = n2 + n + 41 is famous for producing 40 different prime numbers when the consecutive values 0, 1, …, 39 are substituted: see Table 1. Some authors, including Euler, prefer the polynomial f (n − 1) = n2 − n + 41 with prime values for n = 1, …, 40. Since f (−n) = f (n − 1), f (n) actually takes prime values (with each value repeated once) for n = −40, −39, …, 39; equivalently the polynomial f (n − 40) = n2 − 79n + 1601 takes (repeated) prime values for n = 0, 1, …, 79.