{"title":"Dual-Mode Encryption for UC-Secure String OT from Learning with Errors","authors":"Momeng Liu, Yupu Hu, Qiqi Lai, Shanshan Zhang, Huiwen Jia, Wen Gao, Baocang Wang","doi":"10.1049/2024/5513292","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Universal composability (UC) is a primary security flavor for designing oblivious transfer (OT) due to its advantage of arbitrary composition. However, the study of UC-secure OT over lattices is still far behind compared with constructions over prequantum assumptions. Relying on the learning with errors (LWE) assumption, Quach proposes a dual-mode encryption scheme (SCN’20) for deriving a two-round OT whose security is provably UC-secure in the common reference string (CRS) model. Due to its use of a randomized rounding function proposed by Benhamouda et al. (PKC’18), this OT can only be limited to transmitting single-bit messages. Therefore, conducting trivial repetitions of Quach’s OT when transmitting multibit strings would be very costly. In this work, we put forward a modified dual-mode encryption cryptosystem under the decisional LWE assumption, from which we can derive a UC-secure string OT with both full-fledged dual-mode security and better efficiency on transmitting strings. The key technique we adopt is a key reconciliation scheme proposed by Jiang et al. (PKC’20), which is utilized to extend the single-bit symmetric encryption key (produced by the aforementioned rounding function) to a multibit case. Through a comprehensive performance analysis, we demonstrate that our proposal can indeed strike a balance between security and efficiency.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5513292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5513292","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Universal composability (UC) is a primary security flavor for designing oblivious transfer (OT) due to its advantage of arbitrary composition. However, the study of UC-secure OT over lattices is still far behind compared with constructions over prequantum assumptions. Relying on the learning with errors (LWE) assumption, Quach proposes a dual-mode encryption scheme (SCN’20) for deriving a two-round OT whose security is provably UC-secure in the common reference string (CRS) model. Due to its use of a randomized rounding function proposed by Benhamouda et al. (PKC’18), this OT can only be limited to transmitting single-bit messages. Therefore, conducting trivial repetitions of Quach’s OT when transmitting multibit strings would be very costly. In this work, we put forward a modified dual-mode encryption cryptosystem under the decisional LWE assumption, from which we can derive a UC-secure string OT with both full-fledged dual-mode security and better efficiency on transmitting strings. The key technique we adopt is a key reconciliation scheme proposed by Jiang et al. (PKC’20), which is utilized to extend the single-bit symmetric encryption key (produced by the aforementioned rounding function) to a multibit case. Through a comprehensive performance analysis, we demonstrate that our proposal can indeed strike a balance between security and efficiency.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf