{"title":"Simulations of the effect of shot peening backstress on nanoindentation","authors":"Hui Chen, P. Kanouté, Manuel Francois","doi":"10.1088/1361-651x/ad29b2","DOIUrl":null,"url":null,"abstract":"\n Shot peening is a mechanical surface treatment that can introduce compressive residual stress and work hardening simultaneously. This work hardening, considered as a modification of the elastic region with plastic strain, can be modelled with two types of contributions: isotropic hardening and kinematic hardening. In order to characterize the mechanical properties of the treated surface using the instrumented indentation technique, the effect of the backstress associated with kinematic hardening should be studied, especially for works related to fatigue loading. In this paper, the distribution of three backstress components is obtained by shot peening simulations on a nickel-based alloy, Inconel 718, commonly used in the aerospace industry, and a series of indentation simulations are carried out using a spherical tip with different equivalent backstress levels. For Inconel 718, the third backstress component, which has the slowest evolution rate, is found to have the most significant influence on the response. However, compared to the effect of residual stress and cumulated plastic strain, the effect of backstress can be neglected.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad29b2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shot peening is a mechanical surface treatment that can introduce compressive residual stress and work hardening simultaneously. This work hardening, considered as a modification of the elastic region with plastic strain, can be modelled with two types of contributions: isotropic hardening and kinematic hardening. In order to characterize the mechanical properties of the treated surface using the instrumented indentation technique, the effect of the backstress associated with kinematic hardening should be studied, especially for works related to fatigue loading. In this paper, the distribution of three backstress components is obtained by shot peening simulations on a nickel-based alloy, Inconel 718, commonly used in the aerospace industry, and a series of indentation simulations are carried out using a spherical tip with different equivalent backstress levels. For Inconel 718, the third backstress component, which has the slowest evolution rate, is found to have the most significant influence on the response. However, compared to the effect of residual stress and cumulated plastic strain, the effect of backstress can be neglected.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.