CENTRALIZERS IN THE FIRST WEYL ALGEBRA OVER A 2 OR 3-CHARACTERISTIC FIELD

B.S.B. Kouame, K.M. Kouakou
{"title":"CENTRALIZERS IN THE FIRST WEYL ALGEBRA OVER A 2 OR 3-CHARACTERISTIC FIELD","authors":"B.S.B. Kouame, K.M. Kouakou","doi":"10.37418/amsj.13.1.2","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is the determination of some centralizers in $A_{1}$, the first Weyl Algebra. Some authors have done their studies in the case of zero characteristic field. As far as we're concerned, we have decided to work in 2 or 3 characteristic field. Doing so, we show that if $u\\in A_{1}$ is a minimal element, $C$-primitive and without constant term, then its centralizer $Z(u)=\\mathbb{L}[u]\\cap A_{1}$ where $\\mathbb{L}$ is the fractions field of $C$, the center of $A_{1}$. Particularly, when $u$ is ad-invertible, i.e there exists $v\\in A_{1}$ such that $[u,v]=1$, then we have $Z(u)=C[u]$ which is a result analogous to that of \\cite{JJC}.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"548 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is the determination of some centralizers in $A_{1}$, the first Weyl Algebra. Some authors have done their studies in the case of zero characteristic field. As far as we're concerned, we have decided to work in 2 or 3 characteristic field. Doing so, we show that if $u\in A_{1}$ is a minimal element, $C$-primitive and without constant term, then its centralizer $Z(u)=\mathbb{L}[u]\cap A_{1}$ where $\mathbb{L}$ is the fractions field of $C$, the center of $A_{1}$. Particularly, when $u$ is ad-invertible, i.e there exists $v\in A_{1}$ such that $[u,v]=1$, then we have $Z(u)=C[u]$ which is a result analogous to that of \cite{JJC}.
2 或 3 特征域上的第一个韦尔代数中的中心子
本文的目的是确定第一个韦尔代数 $A_{1}$ 中的一些中心子。一些作者在零特征域的情况下进行了研究。就我们而言,我们决定在 2 或 3 特性域中进行研究。在此基础上,我们证明,如果 $u\in A_{1}$ 是一个最小元素、$C$ 原始且没有常数项,那么它的中心子 $Z(u)=\mathbb{L}[u]\cap A_{1}$,其中 $\mathbb{L}$ 是 $C$ 的分数域,即 $A_{1}$ 的中心。特别地,当 $u$ 是 ad-invertible 时,即在 A_{1}$ 中存在 $v\ 使得 $[u,v]=1$ ,那么我们有 $Z(u)=C[u]$ 这是一个类似于 \cite{JJC} 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信