Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt
{"title":"Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface","authors":"Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt","doi":"10.1108/mmms-10-2023-0343","DOIUrl":null,"url":null,"abstract":"PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-10-2023-0343","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.
双曲切线混合对流纳米材料在垂直倾斜表面作用下的动力学熵行为与活化能的关系
目的 考虑了垂直倾斜表面上双曲切线纳米流体(HTN)的非线性混合对流熵优化流动与磁流体动力学(MHD)过程。活化能的印象与非线性辐射、耗散函数、热量产生/消耗联系和焦耳加热的意义一起被纳入建模。该领域的研究可实际应用于高效热交换器、热管理系统或基于纳米材料的设备的设计。设计/方法/途径引入合适的变量集,将偏微分方程系统转换为所需的常微分方程系统。然后通过有限差分法对转换后的 ODEs 系统进行数值求解。通过图表预测适用的传输参数对表面熵、贝扬数、舍伍德数、表皮摩擦、努塞尔特数、温度、速度和浓度场的控制。研究结果从目前的数值研究中可以发现,贝扬数随着浓度差参数 a_2、埃克特数 E_c、热比参数 ?_w 和辐射参数 R_d 的估算值的增加而增加,而表面熵则随着流动性能指数 n、温差参数 a_1、热扩散参数 N_t 和混合对流参数 ?_d 的增加而增加。舍伍德数随着滞留运动参数 N_b 的扩大而增加,而热扩散参数的发展则与之相反。最后,研究结果与以前发表的数据进行了比对,以验证本数值研究的正确性。 原创性/价值 据作者所知,目前还没有任何研究报告可以解释双曲切线混合对流纳米材料在垂直倾斜表面流动时的熵行为与活化能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信