Structural analysis of silk using solid-state NMR

{"title":"Structural analysis of silk using solid-state NMR","authors":"","doi":"10.1016/j.mrl.2024.200111","DOIUrl":null,"url":null,"abstract":"<div><p>Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time, using a silk solution stored within their bodies at room temperature and normal atmospheric pressure. The dragline silk fiber, which is essentially a spider's lifeline, surpasses the strength of a steel wire of equivalent thickness. Regrettably, humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner. Therefore, it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk, and leverage this understanding in the manufacturing of high-strength, high-elasticity fibers. This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders, emphasizing the distinctive attributes of solid-state NMR.</p></div>","PeriodicalId":93594,"journal":{"name":"Magnetic Resonance Letters","volume":"4 3","pages":"Article 200111"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772516224000184/pdfft?md5=783f24dbca2b3776c78218d44b40d76e&pid=1-s2.0-S2772516224000184-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772516224000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time, using a silk solution stored within their bodies at room temperature and normal atmospheric pressure. The dragline silk fiber, which is essentially a spider's lifeline, surpasses the strength of a steel wire of equivalent thickness. Regrettably, humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner. Therefore, it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk, and leverage this understanding in the manufacturing of high-strength, high-elasticity fibers. This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders, emphasizing the distinctive attributes of solid-state NMR.

Abstract Image

利用固态核磁共振对蚕丝进行结构分析
蚕和蜘蛛能够在室温和正常气压下,利用体内储存的丝溶液,在短时间内生成既耐用又有弹性的纤维。拖丝纤维是蜘蛛的生命线,其强度超过同等粗细的钢丝。遗憾的是,人类还无法复制这种工艺,以生态友好的方式生产出具有类似高强度和弹性的纤维。因此,最重要的是彻底理解蚕丝的非凡结构和纤化机制,并利用这一理解制造高强度、高弹性纤维。本综述将深入探讨理解蚕和蜘蛛丝结构的最新进展,强调固态核磁共振的独特属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic Resonance Letters
Magnetic Resonance Letters Analytical Chemistry, Spectroscopy, Radiology and Imaging, Biochemistry, Genetics and Molecular Biology (General)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信